Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-44687
Volltext verfügbar? / Dokumentlieferung
Titel: Understanding rate and capacity limitations in Li–S batteries based on solid-state sulfur conversion in confinement
VerfasserIn: Gungor, Ayca Senol
von Mentlen, Jean-Marc
Ruthes, Jean G. A.
García-Soriano, Francisco J.
Talian, Sara Drvarič
Presser, Volker
Porcar, Lionel
Vizintin, Alen
Wood, Vanessa
Prehal, Christian
Sprache: Englisch
Verlag/Plattform: Research Square
Erscheinungsjahr: 2024
Freie Schlagwörter: Materials Engineering
Electrochemistry
Nanoscience
Lithium-sulfur batteries
nanoporous carbons
operando scattering
impedance spectroscopy
solid-state sulfur conversion
electrochemical performance
DDC-Sachgruppe: 540 Chemie
Dokumenttyp: Sonstiges
Abstract: Li–S batteries with an improved cycle life of over 1000 cycles have been achieved using cathodes of sulfur-infiltrated nanoporous carbon with carbonate-based electrolytes. In these cells, a protective cathode–electrolyte interphase (CEI) is formed, leading to solid-state conversion of S to Li2S in the nanopores. This prevents the dissolution of polysulfides and slows capacity fade. However, there is currently little understanding of what limits the capacity and rate performance of these Li–S batteries. Here, we aim to deepen our understanding of the capacity and rate limitation using a variety of structure-sensitive and electrochemical techniques, such as operando small-angle neutron scattering (SANS), operando X-ray diffraction (XRD), electrochemical impedance spectroscopy, and galvanostatic charge/discharge. Operando SANS and XRD data give direct evidence of CEI formation and solid-state sulfur conversion occurring inside the nanopores. Electrochemical measurements using two nanoporous carbons with different pore sizes suggest that charge transfer at the active material interfaces and the specific CEI/active material structure in the nanopores play the dominant role in defining capacity and rate performance. This work helps define strategies to increase the sulfur loading while maximizing sulfur usage, rate performance, and cycle life.
DOI der Erstveröffentlichung: 10.21203/rs.3.rs-5506493/v1
URL der Erstveröffentlichung: https://www.researchsquare.com/article/rs-5506493/v1
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-446871
hdl:20.500.11880/39821
http://dx.doi.org/10.22028/D291-44687
Datum des Eintrags: 19-Mär-2025
Bemerkung/Hinweis: Preprint
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Volker Presser
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.