Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-44423
Titel: A Fully Polynomial-Time Approximation Scheme for Speed Scaling with a Sleep State
VerfasserIn: Antoniadis, Antonios
Huang, Chien-Chung
Lott, Sebastian
Sprache: Englisch
Titel: Algorithmica : an international journal in computer science
Bandnummer: 81
Heft: 9
Seiten: 3725-3745
Verlag/Plattform: Springer
Erscheinungsjahr: 2019
Freie Schlagwörter: Approximation algorithms
Energy efficiency
Polynomial-time approximation scheme
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: We study classical deadline-based preemptive scheduling of jobs in a computing environment equipped with both dynamic speed scaling and sleep state capabilities: Each job is specified by a release time, a deadline and a processing volume, and has to be scheduled on a single, speed-scalable processor that is supplied with a sleep state. In the sleep state, the processor consumes no energy, but a constant wake-up cost is required to transition back to the active state. In contrast to speed scaling alone, the addition of a sleep state makes it sometimes beneficial to accelerate the processing of jobs in order to transition the processor to the sleep state for longer amounts of time and incur further energy savings. The goal is to output a feasible schedule that minimizes the energy consumption. Since the introduction of the problem by Irani et al. (ACM Trans Algorithms 3(4), 2007), its exact computational complexity has been repeatedly posed as an open question (see e.g. Albers and Antoniadis in ACM Trans Algorithms 10(2):9, 2014; Baptiste et al. in ACM Trans Algorithms 8(3):26, 2012; Irani and Pruhs in SIGACT News 36(2):63–76, 2005). The currently best known upper and lower bounds are a 4 / 3-approximation algorithm and NP-hardness due to Albers and Antoniadis (2014) and Kumar and Shannigrahi (CoRR, 2013. arXiv:1304.7373), respectively. We close the aforementioned gap between the upper and lower bound on the computational complexity of speed scaling with sleep state by presenting a fully polynomial-time approximation scheme for the problem. The scheme is based on a transformation to a non-preemptive variant of the problem, and a discretization that exploits a carefully defined lexicographical ordering among schedules.
DOI der Erstveröffentlichung: 10.1007/s00453-019-00596-3
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s00453-019-00596-3
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-444239
hdl:20.500.11880/39701
http://dx.doi.org/10.22028/D291-44423
ISSN: 1432-0541
0178-4617
Datum des Eintrags: 20-Feb-2025
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Orthopädie
Professur: M - Prof. Dr. Stefan Landgraeber
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s00453-019-00596-3.pdf433,45 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons