Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-43381
Titel: Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
VerfasserIn: Huang, Zhifeng
Hempelmann, Rolf-Wilhelm
Zhang, Yiqiong
Tao, Li
Chen, Ruiyong
Sprache: Englisch
Titel: Green energy & environment
Bandnummer: 9
Heft: 4
Seiten: 713-722
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2024
Freie Schlagwörter: Aqueous redox flow batteries
Water-in-ionic liquid electrolytes
High-voltage aqueous batteries
Organic redox-active materials
DDC-Sachgruppe: 540 Chemie
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redox flow batteries (RFBs) due to the advantages of high ionic conductivity, environmentally benign, safety and low cost. However, the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water (1.23 V) hinder their wide applications. Therefore, seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs. In this work, the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of −0.88 V and 0.78 V vs. Ag, respectively, in “water-in-ionic liquid” supporting electrolytes. Raman spectra reveal that the activity of water is largely suppressed in “water-in-ionic liquid” due to the enhanced hydrogen bond interactions between ionic liquid and water, enabling an electrochemical stability window above 3 V. “Water-in-ionic liquid” supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine. The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the “water-in-ionic liquid” electrolytes. Meanwhile, capacity retention of 99.91% per cycle is achieved over 500 charge/discharge cycles. A power density of 112 mW cm−2 is obtained at a current density of 30 mA cm−2. This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs.
DOI der Erstveröffentlichung: 10.1016/j.gee.2022.09.005
URL der Erstveröffentlichung: https://www.sciencedirect.com/science/article/pii/S2468025722001364
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-433816
hdl:20.500.11880/38912
http://dx.doi.org/10.22028/D291-43381
ISSN: 2468-0257
Datum des Eintrags: 7-Nov-2024
In Beziehung stehendes Objekt: https://creativecommons.org/licenses/by-nc-nd/4.0/
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Chemie
Professur: NT - Prof. Dr. Kaspar Hegetschweiler
NT - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S2468025722001364-main.pdf1,92 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.