Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-42637
Titel: | Peptidic biofunctionalization of laser patterned dental zirconia: A biochemical-topographical approach |
VerfasserIn: | Minguela, J. Müller, D. W. Mücklich, F. Llanes, L. Ginebra, M. P. Roa, J. J. Mas-Moruno, C. |
Sprache: | Englisch |
Titel: | Materials Science & Engineering |
Bandnummer: | 125 |
Verlag/Plattform: | Elsevier |
Erscheinungsjahr: | 2021 |
Freie Schlagwörter: | Zirconia Laser patterning Surface functionalization Peptides Osteointegration |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | A dual approach employing peptidic biofunctionalization and laser micro-patterns on dental zirconia was explored, with the aim of providing a flexible tool to improve tissue integration of restorations. Direct laser interference patterning with a femtosecond Ti:Sapphire laser was employed, and two periodic grooved patterns were produced with a periodicity of 3 and 10 μm. A platform containing the cell-adhesive RGD and the osteogenic DWIVA peptides was used to functionalize the grooved surfaces. Topography and surface damage were characterized by confocal laser scanning (CLSM), scanning electron and scanning transmission electron microscopy techniques. The surface patterns exhibited a high homogeneity and subsurface damage was found in the form of nano-cracks and nano-pores, at the bottom of the valleys. Accelerated tests in water steam were carried out to assess hydrothermal degradation resistance, which slightly decreased after the laser treatment. Interestingly, the detrimental effects of the laser modification were reverted by a post-laser thermal treatment. The attachment of the molecule was verified trough fluorescence CLSM and X-ray photoelectron spectroscopy. Finally, the biological properties of the surfaces were studied in human mesenchymal stem cells. Cell adhesion, morphology, migration and differentiation were investigated. Cells on grooved surfaces displayed an elongated morphology and aligned along the patterns. On these surfaces, migration was greatly enhanced along the grooves, but also highly restricted in the perpendicular direction as compared to flat specimens. After biofunctionalization, cell number and cell area increased and well-developed cell cytoskeletons were observed. However, no effects on cell migration were found for the peptidic platform. Although some osteogenic potential was found in specimens grooved with a periodicity of 10 μm, the largest effects were observed from the biomolecule, which favored upregulation of several genes related to osteoblastic differentiation in all the surfaces. |
DOI der Erstveröffentlichung: | 10.1016/j.msec.2021.112096 |
URL der Erstveröffentlichung: | https://doi.org/10.1016/j.msec.2021.112096 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-426370 hdl:20.500.11880/38240 http://dx.doi.org/10.22028/D291-42637 |
ISSN: | 0928-4931 |
Datum des Eintrags: | 12-Aug-2024 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Materialwissenschaft und Werkstofftechnik |
Professur: | NT - Prof. Dr. Frank Mücklich |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.