Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42511
Titel: Boosting optimal symbolic planning: Operator-potential heuristics
VerfasserIn: Fišer, Daniel
Torralba, Álvaro
Hoffmann, Jörg
Sprache: Englisch
Titel: Artificial Intelligence
Bandnummer: 334
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2024
Freie Schlagwörter: Classical planning
Heuristic search
Symbolic search
Potential heuristics
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Heuristic search guides the exploration of states via heuristic functions ℎ estimating remaining cost. Symbolic search instead replaces the exploration of individual states with that of state sets, compactly represented using binary decision diagrams (BDDs). In cost-optimal planning, heuristic explicit search performs best overall, but symbolic search performs best in many individual domains, so both approaches together constitute the state of the art. Yet combinations of the two have so far not been an unqualified success, because (i) ℎ must be applicable to sets of states rather than individual ones, and (ii) the different state partitioning induced by ℎ may be detrimental for BDD size. Many competitive heuristic functions in planning do not qualify for (i), and it has been shown that even extremely informed heuristics can deteriorate search performance due to (ii). Here we show how to achieve (i) for a state-of-the-art family of heuristic functions, namely potential heuristics. These assign a fixed potential value to each state-variable/value pair, ensuring by LP constraints that the sum over these values, for any state, yields an admissible and consistent heuristic function. Our key observation is that we can express potential heuristics through fixed potential values for operators instead, capturing the change of heuristic value induced by each operator. These reformulated heuristics satisfy (i) because we can express the heuristic value change as part of the BDD transition relation in symbolic search steps. We run exhaustive experiments on IPC benchmarks, evaluating several different instantiations of potential heuristics in forward, backward, and bi-directional symbolic search. Our operatorpotential heuristics turn out to be highly beneficial, in particular they hardly ever suffer from (ii). Our best configurations soundly beat previous optimal symbolic planning algorithms, bringing them on par with the state of the art in optimal heuristic explicit search planning in overall performance.
DOI der Erstveröffentlichung: 10.1016/j.artint.2024.104174
URL der Erstveröffentlichung: https://doi.org/10.1016/j.artint.2024.104174
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-425112
hdl:20.500.11880/38146
http://dx.doi.org/10.22028/D291-42511
ISSN: 0004-3702
Datum des Eintrags: 1-Aug-2024
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Jörg Hoffmann
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S0004370224001103-main.pdf2,07 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons