Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-42319
Titel: | Expectations over Unspoken Alternatives Predict Pragmatic Inferences |
VerfasserIn: | Hu, Jennifer Levy, Roger Degen, Judith Schuster, Sebastian |
Sprache: | Englisch |
Titel: | Transactions of the Association for Computational Linguistics |
Bandnummer: | 11 |
Seiten: | 885-901 |
Verlag/Plattform: | ACL |
Erscheinungsjahr: | 2023 |
DDC-Sachgruppe: | 004 Informatik 400 Sprache, Linguistik |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Scalar inferences (SI) are a signature example of how humans interpret language based on unspoken alternatives. While empirical studies have demonstrated that human SI rates are highly variable—both within instances of a single scale, and across different scales—there have been few proposals that quantitatively explain both cross- and within-scale variation. Furthermore, while it is generally assumed that SIs arise through reasoning about unspoken alternatives, it remains debated whether humans reason about alternatives as linguistic forms, or at the level of concepts. Here, we test a shared mechanism explaining SI rates within and across scales: context-driven expectations about the unspoken alternatives. Using neural language models to approximate human predictive distributions, we find that SI rates are captured by the expectedness of the strong scalemate as an alternative. Crucially, however, expectedness robustly predicts cross-scale variation only under a meaning-based view of alternatives. Our results suggest that pragmatic inferences arise from context-driven expectations over alternatives, and these expectations operate at the level of concepts. |
DOI der Erstveröffentlichung: | 10.1162/tacl_a_00579 |
URL der Erstveröffentlichung: | https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00579/116994/Expectations-over-Unspoken-Alternatives-Predict |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-423199 hdl:20.500.11880/37988 http://dx.doi.org/10.22028/D291-42319 |
ISSN: | 2307-387X |
Datum des Eintrags: | 3-Jul-2024 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Vera Demberg |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.