Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42319
Volltext verfügbar? / Dokumentlieferung
Titel: Expectations over Unspoken Alternatives Predict Pragmatic Inferences
VerfasserIn: Hu, Jennifer
Levy, Roger
Degen, Judith
Schuster, Sebastian
Sprache: Englisch
Titel: Transactions of the Association for Computational Linguistics
Bandnummer: 11
Seiten: 885-901
Verlag/Plattform: ACL
Erscheinungsjahr: 2023
DDC-Sachgruppe: 004 Informatik
400 Sprache, Linguistik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Scalar inferences (SI) are a signature example of how humans interpret language based on unspoken alternatives. While empirical studies have demonstrated that human SI rates are highly variable—both within instances of a single scale, and across different scales—there have been few proposals that quantitatively explain both cross- and within-scale variation. Furthermore, while it is generally assumed that SIs arise through reasoning about unspoken alternatives, it remains debated whether humans reason about alternatives as linguistic forms, or at the level of concepts. Here, we test a shared mechanism explaining SI rates within and across scales: context-driven expectations about the unspoken alternatives. Using neural language models to approximate human predictive distributions, we find that SI rates are captured by the expectedness of the strong scalemate as an alternative. Crucially, however, expectedness robustly predicts cross-scale variation only under a meaning-based view of alternatives. Our results suggest that pragmatic inferences arise from context-driven expectations over alternatives, and these expectations operate at the level of concepts.
DOI der Erstveröffentlichung: 10.1162/tacl_a_00579
URL der Erstveröffentlichung: https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00579/116994/Expectations-over-Unspoken-Alternatives-Predict
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-423199
hdl:20.500.11880/37988
http://dx.doi.org/10.22028/D291-42319
ISSN: 2307-387X
Datum des Eintrags: 3-Jul-2024
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Vera Demberg
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.