Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-42311
Titel: | Design Choices for Crowdsourcing Implicit Discourse Relations: Revealing the Biases Introduced by Task Design |
VerfasserIn: | Pyatkin, Valentina Yung, Frances Pikyu Scholman, Merel Cleo Johanna Tsarfaty, Reut Dagan, Ido Demberg, Vera |
Sprache: | Englisch |
Titel: | Transactions of the Association for Computational Linguistics |
Bandnummer: | 11 |
Seiten: | 1014-1032 |
Verlag/Plattform: | ACL |
Erscheinungsjahr: | 2023 |
DDC-Sachgruppe: | 004 Informatik 400 Sprache, Linguistik |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Disagreement in natural language annotation has mostly been studied from a perspective of biases introduced by the annotators and the annotation frameworks. Here, we propose to analyze another source of bias—task design bias, which has a particularly strong impact on crowdsourced linguistic annotations where natural language is used to elicit the interpretation of lay annotators. For this purpose we look at implicit discourse relation annotation, a task that has repeatedly been shown to be difficult due to the relations’ ambiguity. We compare the annotations of 1,200 discourse relations obtained using two distinct annotation tasks and quantify the biases of both methods across four different domains. Both methods are natural language annotation tasks designed for crowdsourcing. We show that the task design can push annotators towards certain relations and that some discourse relation senses can be better elicited with one or the other annotation approach. We also conclude that this type of bias should be taken into account when training and testing models. |
DOI der Erstveröffentlichung: | 10.1162/tacl_a_00586 |
URL der Erstveröffentlichung: | https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00586/117215/Design-Choices-for-Crowdsourcing-Implicit |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-423115 hdl:20.500.11880/37983 http://dx.doi.org/10.22028/D291-42311 |
ISSN: | 2307-387X |
Datum des Eintrags: | 1-Jul-2024 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Vera Demberg |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.