Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-42310
Titel: | A Data-Driven Investigation of Noise-Adaptive Utterance Generation with Linguistic Modification |
VerfasserIn: | Chingacham, Anupama Demberg, Vera Klakow, Dietrich |
HerausgeberIn: | Abad Gareta, Alberto Loweimi, Erfan |
Sprache: | Englisch |
Titel: | 2022 IEEE Spoken Language Technology Workshop (SLT) : SLT 2022 : proceedings : January 9-12, 2023, Doha, Qatar |
Seiten: | 353-360 |
Verlag/Plattform: | IEEE |
Erscheinungsjahr: | 2023 |
Erscheinungsort: | Piscataway, NJ |
Konferenzort: | Doha, Qatar |
Freie Schlagwörter: | Human computer interaction Conferences Linguistics Speech enhancement Acoustics Noise robustness Noise measurement |
DDC-Sachgruppe: | 004 Informatik 400 Sprache, Linguistik |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | In noisy environments, speech can be hard to understand for humans. Spoken dialog systems can help to enhance the intelligibility of their output, either by modifying the speech synthesis (e.g., imitate Lombard speech) or by optimizing the language generation. We here focus on the second type of approach, by which an intended message is realized with words that are more intelligible in a specific noisy environment. By conducting a speech perception experiment, we created a dataset of 900 paraphrases in babble noise, perceived by native English speakers with normal hearing. We find that careful selection of paraphrases can improve intelligibility by 33% at SNR -5 dB. Our analysis of the data shows that the intelligibility differences between paraphrases are mainly driven by noise-robust acoustic cues. Furthermore, we propose an intelligibility-aware paraphrase ranking model, which outperforms baseline models with a relative improvement of 31.37% at SNR -5 dB. |
DOI der Erstveröffentlichung: | 10.1109/SLT54892.2023.10022437 |
URL der Erstveröffentlichung: | https://ieeexplore.ieee.org/document/10022437 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-423102 hdl:20.500.11880/37979 http://dx.doi.org/10.22028/D291-42310 |
ISBN: | 979-8-3503-9690-4 |
Datum des Eintrags: | 1-Jul-2024 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Vera Demberg |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.