Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-41445
Titel: | Learning proof heuristics by adapting parameters |
VerfasserIn: | Fuchs, Matthias |
Sprache: | Englisch |
Erscheinungsjahr: | 1995 |
Erscheinungsort: | Kaiserslautern |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Forschungsbericht (Report zu Forschungsprojekten) |
Abstract: | We present a method for learning heuristics employed by an automated prover to control its inference machine. The hub of the method is the adaptation of the parameters of a heuristic. Adaptation is accomplished by a genetic algorithm. The necessary guidance during the learning process is provided by a proof problem and a proof of it found in the past. The objective of learning consists in finding a parameter configuration that avoids redundant effort w.r.t. this problem and the particular proof of it. A heuristic learned (adapted) this way can then be applied profitably when searching for a proof of a similar problem. So, our method can be used to train a proof heuristic for a class of similar problems. A number of experiments (with an automated prover for purely equational logic) show that adapted heuristics are not only able to speed up enormously the search for the proof learned during adaptation. They also reduce redundancies in the search for proofs of similar theorems. This not only results in finding proofs faster, but also enables the prover to prove theorems it could not handle before. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-414458 hdl:20.500.11880/37740 http://dx.doi.org/10.22028/D291-41445 |
Schriftenreihe: | SEKI-Report / Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI [ISSN 1437-4447] |
Band: | 95,2 |
Datum des Eintrags: | 29-Mai-2024 |
Fakultät: | SE - Sonstige Einrichtungen |
Fachrichtung: | SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz |
Professur: | SE - Sonstige |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
SEKI-Report-SR-95-02_Fuchs_Learning-proof-heuristics-by-adapting-parameters .pdf | 4,55 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.