Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-40876
Titel: | Dialogue Pidgin Text Adaptation via Contrastive Fine-Tuning |
VerfasserIn: | Chang, Ernie Alabi, Jesujoba O. Adelani, David Ifeoluwa Demberg, Vera |
Sprache: | Englisch |
Titel: | 3rd Workshop on African Natural Language Processing (AfricaNLP 2022) |
Seiten: | 1-8 |
Erscheinungsjahr: | 2022 |
Konferenzort: | Online |
Freie Schlagwörter: | pidgin language generation dialogue multilingual |
DDC-Sachgruppe: | 400 Sprache, Linguistik |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | The surging demand for multilingual dialogue systems often requires a costly labeling process for each language addition. For low resource languages, human annotators are continuously tasked with the adaptation of resource-rich language utterances for each new domain. However, this prohibitive and impractical process can often be a bottleneck for low resource languages that are still without proper translation systems nor parallel corpus. In particular, it is difficult to obtain task-specific low resource language annotations for the English-derived creoles (e.g. Nigerian and Cameroonian Pidgin). To address this issue, we utilize the pretrained language models i.e. BART which has shown great potential in language generation/understanding – we propose to finetune the BART model to generate utterances in Pidgin by leveraging the proximity of the source and target languages, and utilizing positive and negative examples in contrastive training objectives. We collected and released the first parallel Pidgin-English conversation corpus in two dialogue domains and showed that this simple and effective technique is sufficient to yield impressive results for English-to-Pidgin generation, which are two closely-related languages. |
URL der Erstveröffentlichung: | https://openreview.net/pdf?id=HAzG99MV8-5 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-408761 hdl:20.500.11880/36718 http://dx.doi.org/10.22028/D291-40876 |
Datum des Eintrags: | 27-Okt-2023 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Vera Demberg |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.