Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-40875
Volltext verfügbar? / Dokumentlieferung
Titel: Modeling atypicality inferences in pragmatic reasoning
VerfasserIn: Kravtchenko, Ekaterina
Demberg, Vera
HerausgeberIn: Culbertson, Jennifer
Sprache: Englisch
Titel: Cognitive diversity : 44th Annual Meeting of the Cognitive Science Society (CogSci 2022) : Toronto, Canada, 27-30 July 2022
Seiten: 1918-1924
Verlag/Plattform: Curran Associates, Inc.
Erscheinungsjahr: 2022
Erscheinungsort: Red Hook, NY
Konferenzort: Toronto, Canada
Freie Schlagwörter: world knowledge
experimental pragmatics
Bayesian modeling
noisy channel
DDC-Sachgruppe: 400 Sprache, Linguistik
Dokumenttyp: Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag)
Abstract: Empirical studies have demonstrated that when comprehenders are faced with informationally redundant utterances, they may make pragmatic inferences to accommodate the informationally redundant utterance (Kravtchenko & Demberg, 2015. Previous work has also shown that the strength of these inferences depends on prominence of the redundant utterance – if it is stressed prosodically, marked with an exclamation mark, or introduced with a discourse marker such as “Oh yeah”, atypicality inferences are stronger (Kravtchenko & Demberg, 2015; 2022; Ryzhova & Demberg, 2020). The goal of the present paper is to demonstrate how both the atypicality inference and the effect of prominence can be modelled using the rational speech act (RSA) framework. We show that atypicality inferences can be captured by introducing joint reasoning about the habituality of events, following Degen, Tessler, and Goodman (2015); Goodman and Frank (2016). However, we find that joint reasoning models principally cannot account for the effect of differences in utterance prominence. This is because prominence markers do not contribute to the truth-conditional meaning. We then proceed to demonstrate that leveraging a noisy channel model, which has previously been used to model low-level acoustic perception (Bergen & Goodman, 2015), can successfully account for the empirically observed patterns of utterance prominence.
URL der Erstveröffentlichung: https://escholarship.org/uc/item/7630p08b
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-408756
hdl:20.500.11880/36717
http://dx.doi.org/10.22028/D291-40875
ISBN: 978-1-7138-6793-7
Datum des Eintrags: 27-Okt-2023
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Vera Demberg
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.