Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-40594
Titel: Time-dependent prediction of mortality and cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation using machine learning
VerfasserIn: Eisenberg, Lisa
Brossette, Christian
Rauch, Jochen
Grandjean, Andrea
Ottinger, Hellmut
Rissland, Jürgen
Schwarz, Ulf
Graf, Norbert
Beelen, Dietrich W.
Kiefer, Stephan
Pfeifer, Nico
Turki, Amin T.
Sprache: Englisch
Titel: American Journal of Hematology
Bandnummer: 97
Heft: 10
Seiten: 1309-1323
Verlag/Plattform: Wiley
Erscheinungsjahr: 2022
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Allogeneic hematopoietic cell transplantation (HCT) effectively treats high-risk hematologic diseases but can entail HCT-specific complications, which may be minimized by appropriate patient management, supported by accurate, individual risk estimation. However, almost all HCT risk scores are limited to a single risk assessment before HCT without incorporation of additional data. We developed machine learning models that integrate both baseline patient data and time-dependent laboratory measurements to individually predict mortality and cytomegalovirus (CMV) reactivation after HCT at multiple time points per patient. These gradient boosting machine models provide well-calibrated, time-dependent risk predictions and achieved areas under the receiver-operating characteristic of 0.92 and 0.83 and areas under the precision–recall curve of 0.58 and 0.62 for prediction of mortality and CMV reactivation, respectively, in a 21-day time window. Both models were successfully validated in a prospective, non-interventional study and performed on par with expert hematologists in a pilot comparison.
DOI der Erstveröffentlichung: 10.1002/ajh.26671
URL der Erstveröffentlichung: https://onlinelibrary.wiley.com/doi/10.1002/ajh.26671
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-405942
hdl:20.500.11880/36470
http://dx.doi.org/10.22028/D291-40594
ISSN: 1096-8652
0361-8609
Datum des Eintrags: 25-Sep-2023
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fajh.26671&file=ajh26671-sup-0001-supinfo.pdf
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Infektionsmedizin
M - Pädiatrie
Professur: M - Prof. Dr. Norbert Graf
M - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
American J Hematol - 2022 - Eisenberg.pdf4,52 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons