Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39180
Volltext verfügbar? / Dokumentlieferung
Titel: Text-Based Motion Synthesis with a Hierarchical Two-Stream RNN
VerfasserIn: Ghosh, Anindita
Cheema, Noshaba
Oguz, Cennet
Theobalt, Christian
Slusallek, Philipp
Sprache: Englisch
Verlag/Plattform: ACM
Erscheinungsjahr: 2021
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Sonstiges
Abstract: We present a learning-based method for generating animated 3D pose sequences depicting multiple sequential or superimposed actions provided in long, compositional sentences. We propose a hierarchical two-stream sequential model to explore a finer joint-level mapping between natural language sentences and the corresponding 3D pose sequences of the motions. We learn two manifold representations of the motion –- one each for the upper body and the lower body movements. We evaluate our proposed model on the publicly available KIT Motion-Language Dataset containing 3D pose data with human-annotated sentences. Experimental results show that our model advances the state-of-the-art on text-based motion synthesis in objective evaluations by a margin of 50%.
DOI der Erstveröffentlichung: 10.1145/3450618.3469163
URL der Erstveröffentlichung: https://dl.acm.org/doi/10.1145/3450618.3469163
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-391804
hdl:20.500.11880/36394
http://dx.doi.org/10.22028/D291-39180
Datum des Eintrags: 6-Sep-2023
Bemerkung/Hinweis: Poster - In: ACM SIGGRAPH 2021 Posters - Erscheinungsort: New York - Konferenzort: Virtuell - ISBN: 978-1-4503-8371-4 - Artikelnummer: 42
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Philipp Slusallek
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.