Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-40147
Titel: | Affective reactions towards socially interactive agents and their computational modeling |
VerfasserIn: | Schneeberger, Tanja |
Sprache: | Englisch |
Erscheinungsjahr: | 2023 |
DDC-Sachgruppe: | 150 Psychologie 500 Naturwissenschaften |
Dokumenttyp: | Dissertation |
Abstract: | Over the past 30 years, researchers have studied human reactions towards machines applying the Computers Are Social Actors paradigm, which contrasts reactions towards computers with reactions towards humans. The last 30 years have also seen improvements in technology that have led to tremendous changes in computer interfaces and the development of Socially Interactive Agents. This raises the question of how humans react to Socially Interactive Agents. To answer these questions, knowledge from several disciplines is required, which is why this interdisciplinary dissertation is positioned within psychology and computer science. It aims to investigate affective reactions to Socially Interactive Agents and how these can be modeled computationally. Therefore, after a general introduction and background, this thesis first provides an overview of the Socially Interactive Agent system used in this work. Second, it presents a study comparing a human and a virtual job interviewer, which shows that both interviewers induce shame in participants to the same extent. Thirdly, it reports on a study investigating obedience towards Socially Interactive Agents. The results indicate that participants obey human and virtual instructors in similar ways. Furthermore, both types of instructors evoke feelings of stress and shame to the same extent. Fourth, a stress management training using biofeedback with a Socially Interactive Agent is presented. The study shows that a virtual trainer can teach coping techniques for emotionally challenging social situations. Fifth, it introduces MARSSI, a computational model of user affect. The evaluation of the model shows that it is possible to relate sequences of social signals to affective reactions, taking into account emotion regulation processes. Finally, the Deep method is proposed as a starting point for deeper computational modeling of internal emotions. The method combines social signals, verbalized introspection information, context information, and theory-driven knowledge. An exemplary application to the emotion shame and a schematic dynamic Bayesian network for its modeling are illustrated. Overall, this thesis provides evidence that human reactions towards Socially Interactive Agents are very similar to those towards humans, and that it is possible to model these reactions computationally. In den letzten 30 Jahren haben Forschende menschliche Reaktionen auf Maschinen untersucht und dabei das “Computer sind soziale Akteure”-Paradigma genutzt, in dem Reaktionen auf Computer mit denen auf Menschen verglichen werden. In den letzten 30 Jahren hat sich ebenfalls die Technologie weiterentwickelt, was zu einer enormen Veränderung der Computerschnittstellen und der Entwicklung von sozial interaktiven Agenten geführt hat. Dies wirft Fragen zu menschlichen Reaktionen auf sozial interaktive Agenten auf. Um diese Fragen zu beantworten, ist Wissen aus mehreren Disziplinen erforderlich, weshalb diese interdisziplinäre Dissertation innerhalb der Psychologie und Informatik angesiedelt ist. Sie zielt darauf ab, affektive Reaktionen auf sozial interaktive Agenten zu untersuchen und zu erforschen, wie diese computational modelliert werden können. Nach einer allgemeinen Einführung in das Thema gibt diese Arbeit daher, erstens, einen Überblick über das Agentensystem, das in der Arbeit verwendet wird. Zweitens wird eine Studie vorgestellt, in der eine menschliche und eine virtuelle Jobinterviewerin miteinander verglichen werden, wobei sich zeigt, dass beide Interviewerinnen bei den Versuchsteilnehmenden Schamgefühle in gleichem Maße auslösen. Drittens wird eine Studie berichtet, in der Gehorsam gegenüber sozial interaktiven Agenten untersucht wird. Die Ergebnisse deuten darauf hin, dass Versuchsteilnehmende sowohl menschlichen als auch virtuellen Anleiterinnen ähnlich gehorchen. Darüber hinaus werden durch beide Instruktorinnen gleiche Maße von Stress und Scham hervorgerufen. Viertens wird ein Biofeedback-Stressmanagementtraining mit einer sozial interaktiven Agentin vorgestellt. Die Studie zeigt, dass die virtuelle Trainerin Techniken zur Bewältigung von emotional herausfordernden sozialen Situationen vermitteln kann. Fünftens wird MARSSI, ein computergestütztes Modell des Nutzeraffekts, vorgestellt. Die Evaluation des Modells zeigt, dass es möglich ist, Sequenzen von sozialen Signalen mit affektiven Reaktionen unter Berücksichtigung von Emotionsregulationsprozessen in Beziehung zu setzen. Als letztes wird die Deep-Methode als Ausgangspunkt für eine tiefer gehende computergestützte Modellierung von internen Emotionen vorgestellt. Die Methode kombiniert soziale Signale, verbalisierte Introspektion, Kontextinformationen und theoriegeleitetes Wissen. Eine beispielhafte Anwendung auf die Emotion Scham und ein schematisches dynamisches Bayes’sches Netz zu deren Modellierung werden dargestellt. Insgesamt liefert diese Arbeit Hinweise darauf, dass menschliche Reaktionen auf sozial interaktive Agenten den Reaktionen auf Menschen sehr ähnlich sind und dass es möglich ist diese menschlichen Reaktion computational zu modellieren. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-401475 hdl:20.500.11880/36173 http://dx.doi.org/10.22028/D291-40147 |
Schriftenreihe: | Dissertationen aus der Fakultät für Empirische Humanwissenschaften der Universität des Saarlandes |
Erstgutachter: | König, Cornelius |
Tag der mündlichen Prüfung: | 6-Jul-2023 |
Datum des Eintrags: | 1-Aug-2023 |
Drittmittel / Förderung: | Deutsche Forschungsgesellschaft |
Fördernummer: | 392401413 |
Fakultät: | HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft |
Fachrichtung: | HW - Psychologie |
Professur: | HW - Prof. Dr. Cornelius König |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Finale Version Diss Schneeberger.pdf | 42,4 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.