Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-40097
Titel: | Comparison of Transfer Learning and Established Calibration Transfer Methods for Metal Oxide Semiconductor Gas Sensors |
VerfasserIn: | Robin, Yannick Amann, Johannes Schneider, Tizian Schütze, Andreas Bur, Christian |
Sprache: | Englisch |
Titel: | Atmosphere |
Bandnummer: | 14 |
Heft: | 7 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2023 |
Freie Schlagwörter: | indoor air quality metal oxide semiconductor volatile organic compounds calibration transfer deep learning direct standardization |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Although metal oxide semiconductors are a promising candidate for accurate indoor air quality assessments, multiple drawbacks of the gas sensors prevent their widespread use. Examples include poor selectivity, instability over time, and sensor poisoning. Complex calibration methods and advanced operation modes can solve some of those drawbacks. However, this leads to long calibration times, which are unsuitable for mass production. In recent years, multiple attempts to solve calibration transfer have been made with the help of direct standardization, orthogonal signal correction, and many more methods. Besides those, a new promising approach is transfer learning from deep learning. This article will compare different calibration transfer methods, including direct standardization, piecewise direct standardization, transfer learning for deep learning models, and global model building. The machine learning methods to calibrate the initial models for calibration transfer are feature extraction, selection, and regression (established methods) and a custom convolutional neural network TCOCNN. It is shown that transfer learning can outperform the other calibration transfer methods regarding the root mean squared error, especially if the initial model is built with multiple sensors. It was possible to reduce the number of calibration samples by up to 99.3% (from 10 days to approximately 2 h) and still achieve an RMSE for acetone of around 18 ppb (15 ppb with extended individual calibration) if six different sensors were used for building the initial model. Furthermore, it was shown that the other calibration transfer methods (direct standardization and piecewise direct standardization) also work reasonably well for both machine learning approaches, primarily when multiple sensors are used for the initial model. |
DOI der Erstveröffentlichung: | 10.3390/atmos14071123 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/atmos14071123 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-400970 hdl:20.500.11880/36092 http://dx.doi.org/10.22028/D291-40097 |
ISSN: | 2073-4433 |
Datum des Eintrags: | 12-Jul-2023 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Andreas Schütze |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
atmosphere-14-01123.pdf | 1,02 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons