Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-40010
Titel: | Modeling variation of human motion |
VerfasserIn: | Du, Han |
Sprache: | Englisch |
Erscheinungsjahr: | 2022 |
DDC-Sachgruppe: | 500 Naturwissenschaften 620 Ingenieurwissenschaften und Maschinenbau |
Dokumenttyp: | Dissertation |
Abstract: | The synthesis of realistic human motion with large variations and different styles has a growing interest in simulation applications such as the game industry, psychological experiments, and ergonomic analysis. The statistical generative models are used by motion controllers in our motion synthesis framework to create new animations for different scenarios. Data-driven motion synthesis approaches are powerful tools for producing high-fidelity character animations. With the development of motion capture technologies, more and more motion data are publicly available now. However, how to efficiently reuse a large amount of motion data to create new motions for arbitrary scenarios poses challenges, especially for unsupervised motion synthesis. This thesis presents a series of works that analyze and model the variations of human motion data. The goal is to learn statistical generative models to create any number of new human animations with rich variations and styles. The work of the thesis will be presented in three main chapters. We first explore how variation is represented in motion data. Learning a compact latent space that can expressively contain motion variation is essential for modeling motion data. We propose a novel motion latent space learning approach that can intrinsically tackle the spatialtemporal properties of motion data. Secondly, we present our Morphable Graph framework for human motion modeling and synthesis for assembly workshop scenarios. A series of studies have been conducted to apply statistical motion modeling and synthesis approaches for complex assembly workshop use cases. Learning the distribution of motion data can provide a compact representation of motion variations and convert motion synthesis tasks to optimization problems. Finally, we show how the style variations of human activities can be modeled with a limited number of examples. Natural human movements display a rich repertoire of styles and personalities. However, it is difficult to get enough examples for data-driven approaches. We propose a conditional variational autoencoder (CVAE) to combine large variations in the neutral motion database and style information from a limited number of examples. Die Synthese realistischer menschlicher Bewegungen mit großen Variationen und unterschiedlichen Stilen ist für Simulationsanwendungen wie die Spieleindustrie, psychologische Experimente und ergonomische Analysen von wachsendem Interesse. Datengetriebene Bewegungssyntheseansätze sind leistungsstarke Werkzeuge für die Erstellung realitätsgetreuer Charakteranimationen. Mit der Entwicklung von Motion-Capture-Technologien sind nun immer mehr Motion-Daten öffentlich verfügbar. Die effiziente Wiederverwendung einer großen Menge von Motion-Daten zur Erstellung neuer Bewegungen für beliebige Szenarien stellt jedoch eine Herausforderung dar, insbesondere für die unüberwachte Bewegungssynthesemethoden. Das Lernen der Verteilung von Motion-Daten kann eine kompakte Repräsentation von Bewegungsvariationen liefern und Bewegungssyntheseaufgaben in Optimierungsprobleme umwandeln. In dieser Dissertation werden eine Reihe von Arbeiten vorgestellt, die die Variationen menschlicher Bewegungsdaten analysieren und modellieren. Das Ziel ist es, statistische generative Modelle zu erlernen, um eine beliebige Anzahl neuer menschlicher Animationen mit reichen Variationen und Stilen zu erstellen. In unserem Bewegungssynthese-Framework werden die statistischen generativen Modelle von Bewegungscontrollern verwendet, um neue Animationen für verschiedene Szenarien zu erstellen. Die Arbeit in dieser Dissertation wird in drei Hauptkapiteln vorgestellt. Wir untersuchen zunächst, wie Variation in Bewegungsdaten dargestellt wird. Das Erlernen eines kompakten latenten Raums, der Bewegungsvariationen ausdrucksvoll enthalten kann, ist für die Modellierung von Bewegungsdaten unerlässlich. Wir schlagen einen neuartigen Ansatz zum Lernen des latenten Bewegungsraums vor, der die räumlich-zeitlichen Eigenschaften von Bewegungsdaten intrinsisch angehen kann. Zweitens stellen wir unser Morphable Graph Framework für die menschliche Bewegungsmodellierung und -synthese für Montage-Workshop- Szenarien vor. Es wurde eine Reihe von Studien durchgeführt, um statistische Bewegungsmodellierungs und syntheseansätze für komplexe Anwendungsfälle in Montagewerkstätten anzuwenden. Schließlich zeigen wir anhand einer begrenzten Anzahl von Beispielen, wie die Stilvariationen menschlicher Aktivitäten modelliertwerden können. Natürliche menschliche Bewegungen weisen ein reiches Repertoire an Stilen und Persönlichkeiten auf. Es ist jedoch schwierig, genügend Beispiele für datengetriebene Ansätze zu erhalten. Wir schlagen einen Conditional Variational Autoencoder (CVAE) vor, um große Variationen in der neutralen Bewegungsdatenbank und Stilinformationen aus einer begrenzten Anzahl von Beispielen zu kombinieren. Wir zeigen, dass unser Ansatz eine beliebige Anzahl von natürlich aussehenden Variationen menschlicher Bewegungen mit einem ähnlichen Stil wie das Ziel erzeugen kann. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-400109 hdl:20.500.11880/36045 http://dx.doi.org/10.22028/D291-40010 |
Erstgutachter: | Slusallek, Philipp |
Tag der mündlichen Prüfung: | 4-Mai-2023 |
Datum des Eintrags: | 28-Jun-2023 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Philipp Slusallek |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
phd_thesis_final_version_Han_Du.pdf | Main article | 14,96 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.