Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39716
Titel: Unsupervised relational inference using masked reconstruction
VerfasserIn: Großmann, Gerrit
Zimmerlin, Julian
Backenköhler, Michael
Wolf, Verena
Sprache: Englisch
Titel: Applied Network Science
Bandnummer: 8
Heft: 1
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2023
Freie Schlagwörter: Network reconstruction
Interaction learning
Masking
Link prediction
Multi-agent system
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Problem setting: Stochastic dynamical systems in which local interactions give rise to complex emerging phenomena are ubiquitous in nature and society. This work explores the problem of inferring the unknown interaction structure (represented as a graph) of such a system from measurements of its constituent agents or individual components (represented as nodes). We consider a setting where the underlying dynamical model is unknown and where diferent measurements (i.e., snapshots) may be independent (e.g., may stem from diferent experiments). Method: Our method is based on the observation that the temporal stochastic evolution manifests itself in local patterns. We show that we can exploit these patterns to infer the underlying graph by formulating a masked reconstruction task. Therefore, we propose GINA (Graph Inference Network Architecture), a machine learning approach to simultaneously learn the latent interaction graph and, conditioned on the interaction graph, the prediction of the (masked) state of a node based only on adjacent vertices. Our method is based on the hypothesis that the ground truth interaction graph—among all other potential graphs—allows us to predict the state of a node, given the states of its neighbors, with the highest accuracy. Results: We test this hypothesis and demonstrate GINA’s efectiveness on a wide range of interaction graphs and dynamical processes. We fnd that our paradigm allows to reconstruct the ground truth interaction graph in many cases and that GINA outperforms statistical and machine learning baseline on independent snapshots as well as on time series data.
DOI der Erstveröffentlichung: 10.1007/s41109-023-00542-x
URL der Erstveröffentlichung: https://appliednetsci.springeropen.com/articles/10.1007/s41109-023-00542-x
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-397165
hdl:20.500.11880/35784
http://dx.doi.org/10.22028/D291-39716
ISSN: 2364-8228
Datum des Eintrags: 9-Mai-2023
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Verena Wolf
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s41109-023-00542-x.pdf2,34 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons