Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39648
Volltext verfügbar? / Dokumentlieferung
Titel: Fracture and fatigue behaviour of a laser additive manufactured Zr-based bulk metallic glass
VerfasserIn: Best, James P.
Ostergaard, Halsey E.
Li, Bosong
Stolpe, Moritz
Yang, Fan
Nomoto, Keita
Hasib, M. Tarik
Muránsky, Ondrej
Busch, Ralf
Li, Xiaopeng
Kruzic, Jamie J.
Sprache: Englisch
Titel: Additive Manufacturing
Bandnummer: 36
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2020
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Laser additive manufacturing of bulk metallic glass (BMG) provides an effective bypassing of the critical casting thickness constraints that limit the size of components that can be produced; however, open questions remain regarding the resulting mechanical properties. In this work, a Zr-based BMG known as AMZ4 with composition Zr59.3Cu28.8Nb1.5Al10.4 was printed using a laser powder bed fusion (LPBF) technique. Micro X-ray computed tomography results together with electron microscopy imaging revealed porous processing defects in LPBF produced AMZ4 that led to a loss in tensile strength. Fatigue crack growth studies revealed a fatigue threshold, ΔKth., of ∼1.33 MPa√m and a Paris law exponent of m = 1.14, which are relatively low values for metallic materials. A KIC fracture toughness of 24−29 MPa√m was found for the LPBF BMG samples, which is much lower than the KQ of 97−138 MPa√m and KJIC of 158−253 MPa√m measured for the cast alloy with the same composition. The lower fracture toughness of the laser processed AMZ4 was attributed to ∼7.5× higher dissolved oxygen in the structure when compared to the cast AMZ4. Despite the higher level of oxygen, the formation of oxide nanocrystals was not observed by transmission electron microscopy. Oxygen induced toughness loss was confirmed by dissolving elevated concentrations of oxygen into cast AMZ4 rods, which led to a reduction in bending ductility and changes in the short-range order of the glass structure, as revealed by synchrotron X-ray diffraction.
DOI der Erstveröffentlichung: 10.1016/j.addma.2020.101416
URL der Erstveröffentlichung: https://www.sciencedirect.com/science/article/abs/pii/S2214860420307880
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-396488
hdl:20.500.11880/35725
http://dx.doi.org/10.22028/D291-39648
ISSN: 2214-8604
Datum des Eintrags: 3-Mai-2023
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Ralf Busch
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.