Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-39533
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
20230406 Linz PhD thesis final.pdf | 3,09 MB | Adobe PDF | Öffnen/Anzeigen |
Titel: | Automatic Detection of Dementia and related Affective Disorders through Processing of Speech and Language |
VerfasserIn: | Linz, Nicklas |
Sprache: | Englisch |
Erscheinungsjahr: | 2022 |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Dissertation |
Abstract: | In 2019, dementia is has become a trillion dollar disorder. Alzheimer’s disease (AD) is a type of dementia in which the main observable symptom is a decline in cognitive functions, notably memory, as well as language and problem-solving. Experts agree that early detection is crucial to effectively develop and apply interventions and treatments, underlining the need for effective and pervasive assessment and screening tools. The goal of this thesis is to explores how computational techniques can be used to process speech and language samples produced by patients suffering from dementia or related affective disorders, to the end of automatically detecting them in large populations us- ing machine learning models. A strong focus is laid on the detection of early stage dementia (MCI), as most clinical trials today focus on intervention at this level. To this end, novel automatic and semi-automatic analysis schemes for a speech-based cogni- tive task, i.e., verbal fluency, are explored and evaluated to be an appropriate screening task. Due to a lack of available patient data in most languages, world-first multilingual approaches to detecting dementia are introduced in this thesis. Results are encouraging and clear benefits on a small French dataset become visible. Lastly, the task of detecting these people with dementia who also suffer from an affective disorder called apathy is explored. Since they are more likely to convert into later stage of dementia faster, it is crucial to identify them. These are the fist experiments that consider this task us- ing solely speech and language as inputs. Results are again encouraging, both using only speech or language data elicited using emotional questions. Overall, strong results encourage further research in establishing speech-based biomarkers for early detection and monitoring of these disorders to better patients’ lives. Im Jahr 2019 ist Demenz zu einer Billionen-Dollar-Krankheit geworden. Die Alzheimer- Krankheit (AD) ist eine Form der Demenz, bei der das Hauptsymptom eine Abnahme der kognitiven Funktionen ist, insbesondere des Gedächtnisses sowie der Sprache und des Problemlösungsvermögens. Experten sind sich einig, dass eine frühzeitige Erkennung entscheidend für die effektive Entwicklung und Anwendung von Interventionen und Behandlungen ist, was den Bedarf an effektiven und durchgängigen Bewertungsund Screening-Tools unterstreicht. Das Ziel dieser Arbeit ist es zu erforschen, wie computergest ützte Techniken eingesetzt werden können, um Sprach- und Sprechproben von Patienten, die an Demenz oder verwandten affektiven Störungen leiden, zu verarbeiten, mit dem Ziel, diese in großen Populationen mit Hilfe von maschinellen Lernmodellen automatisch zu erkennen. Ein starker Fokus liegt auf der Erkennung von Demenz im Frühstadium (MCI), da sich die meisten klinischen Studien heute auf eine Intervention auf dieser Ebene konzentrieren. Zu diesem Zweck werden neuartige automatische und halbautomatische Analyseschemata für eine sprachbasierte kognitive Aufgabe, d.h. die verbale Geläufigkeit, erforscht und als geeignete Screening-Aufgabe bewertet. Aufgrund des Mangels an verfügbaren Patientendaten in den meisten Sprachen werden in dieser Arbeit weltweit erstmalig mehrsprachige Ansätze zur Erkennung von Demenz vorgestellt. Die Ergebnisse sind ermutigend und es werden deutliche Vorteile an einem kleinen französischen Datensatz sichtbar. Schließlich wird die Aufgabe untersucht, jene Menschen mit Demenz zu erkennen, die auch an einer affektiven Störung namens Apathie leiden. Da sie mit größerer Wahrscheinlichkeit schneller in ein späteres Stadium der Demenz übergehen, ist es entscheidend, sie zu identifizieren. Dies sind die ersten Experimente, die diese Aufgabe unter ausschließlicher Verwendung von Sprache und Sprache als Input betrachten. Die Ergebnisse sind wieder ermutigend, sowohl bei der Verwendung von reiner Sprache als auch bei der Verwendung von Sprachdaten, die durch emotionale Fragen ausgelöst werden. Insgesamt sind die Ergebnisse sehr ermutigend und ermutigen zu weiterer Forschung, um sprachbasierte Biomarker für die Früherkennung und Überwachung dieser Erkrankungen zu etablieren und so das Leben der Patienten zu verbessern. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-395335 hdl:20.500.11880/35718 http://dx.doi.org/10.22028/D291-39533 |
Erstgutachter: | Krüger, Antonio |
Tag der mündlichen Prüfung: | 24-Mär-2023 |
Datum des Eintrags: | 2-Mai-2023 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Antonio Krüger |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons