Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39545
Titel: From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations : Astroglia as a Target for Further Research
VerfasserIn: Gobbo, Davide
Scheller, Anja
Kirchhoff, Frank
Sprache: Englisch
Titel: Frontiers in Neurology
Bandnummer: 12
Verlag/Plattform: Frontiers
Erscheinungsjahr: 2021
Freie Schlagwörter: astrocytes
sleep/wake cycle
NREM
network plasticity
cortico-thalamo-cortical oscillations
spike and wave discharges
sleep
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5–4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11–16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
DOI der Erstveröffentlichung: 10.3389/fneur.2021.661408
URL der Erstveröffentlichung: https://www.frontiersin.org/articles/10.3389/fneur.2021.661408
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-395455
hdl:20.500.11880/35641
http://dx.doi.org/10.22028/D291-39545
ISSN: 1664-2295
Datum des Eintrags: 17-Apr-2023
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Physiologie
Professur: M - Prof. Dr. Frank Kirchhoff
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
fneur-12-661408.pdf4,91 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons