Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-38767
Titel: | Following the trail of cellular signatures : computational methods for the analysis of molecular high-throughput profiles |
VerfasserIn: | Kehl, Tim |
Sprache: | Englisch |
Erscheinungsjahr: | 2022 |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | Over the last three decades, high-throughput techniques, such as next-generation sequencing, microarrays, or mass spectrometry, have revolutionized biomedical research by enabling scientists to generate detailed molecular profiles of biological samples on a large scale. These profiles are usually complex, high-dimensional, and often prone to technical noise, which makes a manual inspection practically impossible. Hence, powerful computational methods are required that enable the analysis and exploration of these data sets and thereby help researchers to gain novel insights into the underlying biology. In this thesis, we present a comprehensive collection of algorithms, tools, and databases for the integrative analysis of molecular high-throughput profiles. We developed these tools with two primary goals in mind. The detection of deregulated biological processes in complex diseases, like cancer, and the identification of driving factors within those processes. Our first contribution in this context are several major extensions of the GeneTrail web service that make it one of the most comprehensive toolboxes for the analysis of deregulated biological processes and signaling pathways. GeneTrail offers a collection of powerful enrichment and network analysis algorithms that can be used to examine genomic, epigenomic, transcriptomic, miRNomic, and proteomic data sets. In addition to approaches for the analysis of individual -omics types, our framework also provides functionality for the integrative analysis of multi-omics data sets, the investigation of time-resolved expression profiles, and the exploration of single-cell experiments. Besides the analysis of deregulated biological processes, we also focus on the identification of driving factors within those processes, in particular, miRNAs and transcriptional regulators. For miRNAs, we created the miRNA pathway dictionary database miRPathDB, which compiles links between miRNAs, target genes, and target pathways. Furthermore, it provides a variety of tools that help to study associations between them. For the analysis of transcriptional regulators, we developed REGGAE, a novel algorithm for the identification of key regulators that have a significant impact on deregulated genes, e.g., genes that show large expression differences in a comparison between disease and control samples. To analyze the influence of transcriptional regulators on deregulated biological processes,, we also created the RegulatorTrail web service. In addition to REGGAE, this tool suite compiles a range of powerful algorithms that can be used to identify key regulators in transcriptomic, proteomic, and epigenomic data sets. Moreover, we evaluate the capabilities of our tool suite through several case studies that highlight the versatility and potential of our framework. In particular, we used our tools to conducted a detailed analysis of a Wilms' tumor data set. Here, we could identify a circuitry of regulatory mechanisms, including new potential biomarkers, that might contribute to the blastemal subtype's increased malignancy, which could potentially lead to new therapeutic strategies for Wilms' tumors. In summary, we present and evaluate a comprehensive framework of powerful algorithms, tools, and databases to analyze molecular high-throughput profiles. The provided methods are of broad interest to the scientific community and can help to elucidate complex pathogenic mechanisms. Heutzutage werden molekulare Hochdurchsatzmessverfahren, wie Hochdurchsatzsequenzierung, Microarrays, oder Massenspektrometrie, regelmäßig angewendet, um Zellen im großen Stil und auf verschiedenen molekularen Ebenen zu charakterisieren. Die dabei generierten Datensätze sind in der Regel hochdimensional und oft verrauscht. Daher werden leistungsfähige computergestützte Anwendungen benötigt, um deren Analyse zu ermöglichen. In dieser Arbeit präsentieren wir eine Reihe von effektiven Algorithmen, Programmen, und Datenbaken für die Analyse von molekularen Hochdurchsetzdatensätzen. Diese Ansätze wurden entwickelt, um deregulierte biologische Prozesse zu untersuchen und in diesen wichtige Schlüsselmoleküle zu identifizieren. Zusätzlich wurden eine Reihe von Analysen durchgeführt um die verschiedenen Methoden zu evaluieren. Zu diesem Zweck haben wir insbesondere eine Wilmstumor Studie durchgeführt, in der wir verschiedene regulatorische Mechanismen und dazugehörige Biomarker identifizieren konnten, die für die erhöhte Malignität von Wilmstumoren mit blastemreichen Subtyp verantwortlich sein könnten. Diese Erkenntnisse könnten in der Zukunft zu einer verbesserten Behandlung dieser Tumore führen. Diese Ergebnisse zeigen eindrucksvoll, dass unsere Ansätze in der Lage sind, verschiedene molekulare Hochdurchsatzmessungen auszuwerten und dabei helfen können pathogene Mechanismen im Zusammenhang mit Krebs oder anderen komplexen Krankheiten aufzuklären. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-387673 hdl:20.500.11880/35028 http://dx.doi.org/10.22028/D291-38767 |
Erstgutachter: | Lenhof, Hans-Peter |
Tag der mündlichen Prüfung: | 13-Jan-2023 |
Datum des Eintrags: | 30-Jan-2023 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Hans-Peter Lenhof |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Dissertation_Finale_Abgabe.pdf | Dissertation | 13,12 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons