Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-38827
Titel: | Ergonomic and economic evaluation of a collaborative hybrid order picking system |
VerfasserIn: | Zhang, Minqi Grosse, Eric H. Glock, Christoph H. |
Sprache: | Englisch |
Titel: | International Journal of Production Economics |
Bandnummer: | 258 |
Verlag/Plattform: | Elsevier |
Erscheinungsjahr: | 2023 |
DDC-Sachgruppe: | 330 Wirtschaft |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Warehouses are important nodes in almost every supply chain. Within warehouses, order picking is a crucial task that is extremely time- and cost-intensive. While order picking systems (OPSs) have traditionally been operated manually, new technologies offer opportunities for reducing the workload of warehouse workers. These technologies include autonomous picking robots that can function in combination with human pickers within a shared workspace. This technology enables human–robot collaboration and enhances flexibility in system design, as robots can either support humans or work independently. Research on the advantages of these hybrid OPSs (HOPSs) for improving operational performance is still scarce, however. To contribute to closing this research gap, we propose an agent-based simulation model to investigate how HOPSs reduce the daily workload of human order pickers. The results reveal that HOPSs – if certain assignment rules for the picking tasks are considered – can reduce both the operational costs of the system and human workload compared to a pure manual or a fully automated OPS. Nonetheless, attention should be paid to control the item weight pickers are supposed to handle, as HOPSs reduce the travel distance of human pickers, resulting in a higher frequency of picking activities and an increased ergonomic risk for musculoskeletal disorders. |
DOI der Erstveröffentlichung: | 10.1016/j.ijpe.2023.108774 |
URL der Erstveröffentlichung: | https://doi.org/10.1016/j.ijpe.2023.108774 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-388274 hdl:20.500.11880/35013 http://dx.doi.org/10.22028/D291-38827 |
ISSN: | 0925-5273 |
Datum des Eintrags: | 25-Jan-2023 |
Fakultät: | HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft |
Fachrichtung: | HW - Wirtschaftswissenschaft |
Professur: | HW - Prof. Dr. Eric Grosse |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.