Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-38682
Titel: Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario
VerfasserIn: Harweg, Thomas
Wagner, Mathias
Weichert, Frank
Sprache: Englisch
Titel: International Journal of Environmental Research and Public Health
Bandnummer: 20 (2023)
Heft: 1
Verlag/Plattform: MDPI
Erscheinungsjahr: 2022
Freie Schlagwörter: COVID-19
agent-based simulation
social-force model
numerical simulation
systems biology
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: With the COVID-19 pandemic, the role of infectious disease spreading in public places has been brought into focus more than ever. Places that are of particular interest regarding the spread of infectious diseases are international airport terminals, not only for the protection of staff and ground crew members but also to help minimize the risk of the spread of infectious entities such as COVID-19 around the globe. Computational modelling and simulation can help in understanding and predicting the spreading of infectious diseases in any such scenario. In this paper, we propose a model, which combines a simulation of high geometric detail regarding virus spreading with an account of the temporal progress of infection dynamics. We, thus, introduce an agent-based social force model for tracking the spread of infectious diseases by modelling aerosol traces and concentration of virus load in the air. We complement this agent-based model to have consistency over a period of several days. We then apply this model to investigate simulations in a realistic airport setting with multiple virus variants of varying contagiousness. According to our experiments, a virus variant has to be at least twelve times more contagious than the respective control to result in a level of infection of more than 30%. Combinations of agent-based models with temporal components can be valuable tools in an attempt to assess the risk of infection attributable to a particular virus and its variants.
DOI der Erstveröffentlichung: 10.3390/ijerph20010545
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-386826
hdl:20.500.11880/34883
http://dx.doi.org/10.22028/D291-38682
ISSN: 1660-4601
Datum des Eintrags: 16-Jan-2023
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Pathologie
Professur: M - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
ijerph-20-00545.pdf4,54 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons