Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-38645
Volltext verfügbar? / Dokumentlieferung
Titel: On Training Instance Selection for Few-Shot Neural Text Generation
VerfasserIn: Chang, Ernie
Shen, Xiaoyu
Yeh, Hui-Syuan
Demberg, Vera
Sprache: Englisch
Verlag/Plattform: arXiv
Erscheinungsjahr: 2021
DDC-Sachgruppe: 400 Sprache, Linguistik
Dokumenttyp: Sonstiges
Abstract: Large-scale pretrained language models have led to dramatic improvements in text generation. Impressive performance can be achieved by finetuning only on a small number of instances (few-shot setting). Nonetheless, almost all previous work simply applies random sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. In this work, we present a study on training instance selection in few-shot neural text generation. The selection decision is made based only on the unlabeled data so as to identify the most worthwhile data points that should be annotated under some budget of labeling cost. Based on the intuition that the few-shot training instances should be diverse and representative of the entire data distribution, we propose a simple selection strategy with K-means clustering. We show that even with the naive clustering-based approach, the generation models consistently outperform random sampling on three text generation tasks: data-to-text generation, document summarization and question generation. We hope that this work will call for more attention on this largely unexplored area.
URL der Erstveröffentlichung: https://arxiv.org/abs/2107.03176
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-386450
hdl:20.500.11880/34842
http://dx.doi.org/10.22028/D291-38645
Datum des Eintrags: 3-Jan-2023
Bemerkung/Hinweis: Preprint
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Vera Demberg
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.