Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-38082
Volltext verfügbar? / Dokumentlieferung
Titel: A Rule-based Expert System for Home Power Management Incorporating Real-Life Data Sets
VerfasserIn: Minhas, Daud Mustafa
Meiers, Josef
Frey, Georg
Sprache: Englisch
Titel: 3rd International Conference on Smart Grid and Renewable Energy : proceedings : Sheraton Grand Doha Hotel, Doha, Qatar, 20-22 March, 2022
Verlag/Plattform: IEEE
Erscheinungsjahr: 2022
Erscheinungsort: [Piscataway, NJ]
Konferenzort: Doha, Qatar
Freie Schlagwörter: Degradation
Renewable energy sources
Power supplies
Simulation
Power system management
Electric vehicles
Batteries
DDC-Sachgruppe: 600 Technik
Dokumenttyp: Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag)
Abstract: Photovoltaic (PV) and electric vehicle (EV) systems are gaining traction as a result of increased energy demands and the global imperative to provide affordable and sustainable energy. A small-scale home area power network (HAPN) is explored in this article, which integrates an intelligent energy management system (iEMS) using a cost-effective power scheduling approach. The purpose of this paper is to examine the proposed iEMS capabilities using real-world yearly data sets on residential energy consumption, electric vehicle driving trends, and electric vehicle battery (dis)charging patterns. Additionally, by integrating a battery life-cycle degradation model, a percentage of EV storage capacity loss is calculated. The comfort of consumers is ensured by matching their energy demands to the least expensive energy supplies. The simulation results illustrate the proposed iEMS behavior utilizing a variety of performance measures, and the ideal scheduling signals for a mix of energy sources are thus presented.
DOI der Erstveröffentlichung: 10.1109/SGRE53517.2022.9774212
URL der Erstveröffentlichung: https://ieeexplore.ieee.org/document/9774212
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-380822
hdl:20.500.11880/34639
http://dx.doi.org/10.22028/D291-38082
ISBN: 978-1-6654-7908-0
978-1-66547-909-7
Datum des Eintrags: 5-Dez-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Georg Frey
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.