Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-38081
Titel: | Deep Learning-based Power Load Shedding Approach for Gaza's Electricity Grid |
VerfasserIn: | El Astal, Mohammed Taha Elhabbash, Alaa Abu-Hudrouss, Ammar Frey, Georg |
HerausgeberIn: | Leonowicz, Zbigniew |
Sprache: | Englisch |
Titel: | Conference Proceedings 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) : 28 June-1 July, 2022, Prague, Czech Republic |
Verlag/Plattform: | IEEE |
Erscheinungsjahr: | 2022 |
Erscheinungsort: | [Piscataway, NJ] |
Konferenzort: | Prague, Czech Republic |
Freie Schlagwörter: | Schedules Temperature distribution Wind speed Estimation Load shedding Artificial neural networks Humidity |
DDC-Sachgruppe: | 600 Technik |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | Many developing countries suffer from a chronic electricity deficit. As a particular case, this shortage in electricity supplies in Gaza Strip undermines the already fragile conditions, and is considered as an obstacle to any economic development. In order to distribute the available amount of electricity evenly, the local utility executes plentiful on/off power load shedding daily. However, further complications are experienced because of variations in demands and sources daily. Here, a high-precise prediction model for load demand is proposed. This is to help staff in making quick and accurate decisions. The model is built using an artificial neural network (ANN), and trained based on supervisory control and data acquisition (SCADA)'s data including generation, temperature, humidity, and wind speed. The model can predict the energy consumption for given parameters, and hence identifies the power load shedding schedule needed for the given day. The proposed model was evaluated in terms of accuracy and has proven to result in a good estimation. |
DOI der Erstveröffentlichung: | 10.1109/EEEIC/ICPSEurope54979.2022.9854713 |
URL der Erstveröffentlichung: | https://ieeexplore.ieee.org/document/9854713 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-380818 hdl:20.500.11880/34637 http://dx.doi.org/10.22028/D291-38081 |
ISBN: | 978-1-6654-8537-1 |
Datum des Eintrags: | 5-Dez-2022 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Georg Frey |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.