Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-38172
Titel: Lightweight, semi-automatic variability extraction: a case study on scientific computing
VerfasserIn: Grebhahn, Alexander
Kaltenecker, Christian
Engwer, Christian
Siegmund, Norbert
Apel, Sven
Sprache: Englisch
Titel: Empirical Software Engineering
Bandnummer: 26
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2021
Freie Schlagwörter: Software variability
Configuration
Variability extraction
Variability analysis
DDC-Sachgruppe: 510 Mathematik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: In scientific computing, researchers often use feature-rich software frameworks to simulate physical, chemical, and biological processes. Commonly, researchers follow a clone-and-own approach: Copying the code of an existing, similar simulation and adapting it to the new simulation scenario. In this process, a user has to select suitable artifacts (e.g., classes) from the given framework and replaces the existing artifacts from the cloned simulation. This manual process incurs substantial effort and cost as scientific frameworks are complex and provide large numbers of artifacts. To support researchers in this area, we propose a lightweight API-based analysis approach, called VORM, that recommends appropriate artifacts as possible alternatives for replacing given artifacts. Such alternative artifacts can speed up performance of the simulation or make it amenable to other use cases, without modifying the overall structure of the simulation. We evaluate the practicality of VORM—especially, as it is very lightweight but possibly imprecise—by means of a case study on the DUNE numerics framework and two simulations from the realm of physical simulations. Specifically, we compare the recommendations by VORM with recommendations by a domain expert (a developer of DUNE). VORM recommended 34 out of the 37 artifacts proposed by the expert. In addition, it recommended 2 artifacts that are applicable but have been missed by the expert and 32 artifacts not recommended by the expert, which however are still applicable in the simulation scenario with slight modifications. Diving deeper into the results, we identified an undiscovered bug and an inconsistency in DUNE, which corroborates the usefulness of VORM.
DOI der Erstveröffentlichung: 10.1007/s10664-020-09922-8
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s10664-020-09922-8
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-381721
hdl:20.500.11880/34463
http://dx.doi.org/10.22028/D291-38172
ISSN: 1382-3256
1573-7616
Datum des Eintrags: 23-Nov-2022
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Sven Apel
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s10664-020-09922-8.pdf1,28 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons