Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37951
Titel: Plasma Metabolome Alterations Discriminate between COVID-19 and Non-COVID-19 Pneumonia
VerfasserIn: More, Tushar H.
Mozafari, Bahareh
Märtens, Andre
Herr, Christian
Lepper, Philipp M.
Danziger, Guy
Volk, Thomas
Hoersch, Sabrina
Krawczyk, Marcin
Guenther, Katharina
Hiller, Karsten
Bals, Robert
Sprache: Englisch
Titel: Metabolites
Bandnummer: 12
Heft: 11
Verlag/Plattform: MDPI
Erscheinungsjahr: 2022
Freie Schlagwörter: COVID-19
non-COVID-19 pneumonia
metabolomics
metabolic profiling
multivariate statistics
machine learning
plasma
mass spectrometry
community-acquired pneumonia
system biology
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Pneumonia is a common cause of morbidity and mortality and is most often caused by bacterial pathogens. COVID-19 is characterized by lung infection with potential progressive organ failure. The systemic consequences of both disease on the systemic blood metabolome are not fully understood. The aim of this study was to compare the blood metabolome of both diseases and we hypothesize that plasma metabolomics may help to identify the systemic effects of these diseases. Therefore, we profiled the plasma metabolome of 43 cases of COVID-19 pneumonia, 23 cases of non-COVID-19 pneumonia, and 26 controls using a non-targeted approach. Metabolic alterations differentiating the three groups were detected, with specific metabolic changes distinguishing the two types of pneumonia groups. A comparison of venous and arterial blood plasma samples from the same subjects revealed the distinct metabolic effects of pulmonary pneumonia. In addition, a machine learning signature of four metabolites was predictive of the disease outcome of COVID-19 subjects with an area under the curve (AUC) of 86 ± 10 %. Overall, the results of this study uncover systemic metabolic changes that could be linked to the etiology of COVID-19 pneumonia and nonCOVID-19 pneumonia.
DOI der Erstveröffentlichung: 10.3390/metabo12111058
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-379512
hdl:20.500.11880/34306
http://dx.doi.org/10.22028/D291-37951
ISSN: 2218-1989
Datum des Eintrags: 11-Nov-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/metabo12111058/s1
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Anästhesiologie
M - Innere Medizin
Professur: M - Prof. Dr. Robert Bals
M - Prof. Dr. Thomas Volk
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
metabolites-12-01058.pdf1,89 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons