Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37855
Volltext verfügbar? / Dokumentlieferung
Titel: Complexity reduction for consumer device compressed sensing channel estimation
VerfasserIn: Chelli, Kelvin
Sirsi, Praharsha
Herfet, Thorsten
Sprache: Englisch
Titel: 2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)
Seiten: 189-194
Verlag/Plattform: IEEE
Erscheinungsjahr: 2017
Erscheinungsort: Piscataway, NJ
Freie Schlagwörter: OFDM
V2I
IoT
Doubly-Selective Channels
Channel Estimation
Compressed Sensing
High Mobility
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag)
Abstract: High mobility has become a mandatory consideration in the design and development of wireless communication systems today. It results in a doubly selective or a time-varying multipath channel that is arduous to estimate. Compressed Sensing (CS) schemes like the Rake Matching Pursuit (RMP) algorithm exploit the inherent sparsity in these channels and are often able to resolve the multipath environments into their respective sparse representations, even under the presence of large Doppler shifts. However, the complexity involved is substantial and might imperil practical implementation on resource limited consumer device hardware. We propose a novel low-complexity CS scheme, called as Gradient Rake MP (GRMP) that optimizes the search related to the multipath delays resulting in a complexity that is significantly lower than all CS based channel estimation schemes. Additionally, the results confirm that the Bit Error Rate (BER) performance of GRMP is comparable to that of the more complex RMP algorithm. The dictionary is an imperative requirement of CS schemes and plays a decisive role in the quality of the channel estimate. Often in literature, details regarding the generation of the dictionary and its complexity is ignored and instead a suitable dictionary is assumed to be available at the receiver. This paper investigates the complexity and memory demands associated with the dictionary and presents a novel scheme to build it using the concept of wavelets. The ideas proposed in this paper are targeted towards reducing the complexity associated with the estimation of a doubly selective channel with a goal to enable implementation on consumer hardware. Although implemented for the IEEE 802.11p standard, the proposed ideas are applicable to any Orthogonal Frequency-Division Multiplexing (OFDM) based wireless system that is expected to work in highly mobile environments.
DOI der Erstveröffentlichung: 10.1109/ICCE-Berlin.2017.8210625
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-378556
hdl:20.500.11880/34236
http://dx.doi.org/10.22028/D291-37855
ISBN: 978-1-5090-4014-8
978-1-5090-4015-5 (ISBN der Printausgabe)
Datum des Eintrags: 7-Nov-2022
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Thorsten Herfet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.