Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37723
Titel: Model-Based Analysis of SARS-CoV-2 Infections, Hospitalization and Outcome in Germany, the Federal States and Districts
VerfasserIn: Dings, Christiane
Götz, Katharina Martha
Och, Katharina
Sihinevich, Iryna
Werthner, Quirin
Smola, Sigrun
Bliem, Marc
Mahfoud, Felix
Volk, Thomas
Kreuer, Sascha
Rissland, Jürgen
Selzer, Dominik
Lehr, Thorsten
Sprache: Englisch
Titel: Viruses
Bandnummer: 14
Heft: 10
Verlag/Plattform: MDPI
Erscheinungsjahr: 2022
Freie Schlagwörter: coronavirus disease 2019 (COVID-19)
SARS-CoV-2
mathematical model
age
sex
testing strategy
variant of concern (VOC
intensive care
non-pharmaceutical interventions
DDC-Sachgruppe: 500 Naturwissenschaften
610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The coronavirus disease 2019 (COVID-19) pandemic challenged many national health care systems, with hospitals reaching capacity limits of intensive care units (ICU). Thus, the estimation of acute local burden of ICUs is critical for appropriate management of health care resources. In this work, we applied non-linear mixed effects modeling to develop an epidemiological SARS-CoV-2 infection model for Germany, with its 16 federal states and 400 districts, that describes infections as well as COVID-19 inpatients, ICU patients with and without mechanical ventilation, recoveries, and fatalities during the first two waves of the pandemic until April 2021. Based on model analyses, covariates influencing the relation between infections and outcomes were explored. Non-pharmaceutical interventions imposed by governments were found to have a major impact on the spreading of SARS-CoV-2. Patient age and sex, the spread of variant B.1.1.7, and the testing strategy (number of tests performed weekly, rate of positive tests) affected the severity and outcome of recorded cases and could reduce the observed unexplained variability between the states. Modeling could reasonably link the discrepancies between fine-grained model simulations of the 400 German districts and the reported number of available ICU beds to coarse-grained COVID-19 patient distribution patterns within German regions.
DOI der Erstveröffentlichung: 10.3390/v14102114
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-377237
hdl:20.500.11880/34151
http://dx.doi.org/10.22028/D291-37723
ISSN: 1999-4915
Datum des Eintrags: 28-Okt-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/v14102114/s1
Fakultät: M - Medizinische Fakultät
NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: M - Anästhesiologie
M - Infektionsmedizin
M - Innere Medizin
NT - Pharmazie
Professur: M - Prof. Dr. Michael Böhm
M - Prof. Dr. Sigrun Smola
M - Prof. Dr. Thomas Volk
NT - Prof. Dr. Thorsten Lehr
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
viruses-14-02114-v2.pdf5,84 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons