Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37716
Titel: Deep Learning Based Calibration Time Reduction for MOS Gas Sensors with Transfer Learning
VerfasserIn: Robin, Yannick
Amann, Johannes
Goodarzi, Payman
Schneider, Tizian
Schütze, Andreas
Bur, Christian
Sprache: Englisch
Titel: Atmosphere
Bandnummer: 13
Heft: 10
Verlag/Plattform: MDPI
Erscheinungsjahr: 2022
Freie Schlagwörter: air quality
MOS gas sensors
deep learning
calibration time reduction
transfer learning
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: In this study, methods from the field of deep learning are used to calibrate a metal oxide semiconductor (MOS) gas sensor in a complex environment in order to be able to predict a specific gas concentration. Specifically, we want to tackle the problem of long calibration times and the problem of transferring calibrations between sensors, which is a severe challenge for the widespread use of MOS gas sensor systems. Therefore, this contribution aims to significantly diminish those problems by applying transfer learning from the field of deep learning. Within the field of deep learning, transfer learning has become more and more popular. Nowadays, building a model (calibrating a sensor) based on pre-trained models instead of training from scratch is a standard routine. This allows the model to train with inherent information and reach a suitable solution much faster or more accurately. For predicting the gas concentration with a MOS gas sensor operated dynamically using temperature cycling, the calibration time can be significantly reduced for all nine target gases at the ppb level (seven volatile organic compounds plus carbon monoxide and hydrogen). It was possible to reduce the calibration time by up to 93% and still obtain root-mean-squared error (RMSE) values only double the best achieved RMSEs. In order to obtain the best possible transferability, different transfer methods and the influence of different transfer data sets for training were investigated. Finally, transfer learning based on neural networks is compared to a global calibration model based on feature extraction, selection, and regression to place the results in the context of already existing work.
DOI der Erstveröffentlichung: 10.3390/atmos13101614
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-377162
hdl:20.500.11880/34144
http://dx.doi.org/10.22028/D291-37716
ISSN: 2073-4433
Datum des Eintrags: 27-Okt-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
atmosphere-13-01614-v2.pdf858,68 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons