Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37464
Volltext verfügbar? / Dokumentlieferung
Titel: Distinct Patterns of Blood Cytokines Beyond a Cytokine Storm Predict Mortality in COVID-19
VerfasserIn: Herr, Christian
Mang, Sebastian
Mozafari, Bahareh
Guenther, Katharina
Speer, Thimoteus
Seibert, Martina
Srikakulam, Sanjay Kumar
Beisswenger, Christoph
Ritzmann, Felix
Keller, Andreas
Mueller, Rolf
Smola, Sigrun
Eisinger, Dominic
Zemlin, Michael
Danziger, Guy
Volk, Thomas
Hoersch, Sabrina
Krawczyk, Marcin
Lammert, Frank
Adams, Thomas
Wagenpfeil, Gudrun
Kindermann, Michael
Marcu, Constantin
Ataya, Zuhair Wolf Dietrich
Mittag, Marc
Schwarzkopf, Konrad
Custodis, Florian
Grandt, Daniel
Schaefer, Harald
Eltges, Kai
Lepper, Philipp M.
Bals, Robert
Sprache: Englisch
Titel: Journal of Inflammation Research
Bandnummer: 2021
Heft: 14
Seiten: 4651-4667
Verlag/Plattform: DOVE
Erscheinungsjahr: 2021
Freie Schlagwörter: biomarker
inflammation
SARS-CoV2
DDC-Sachgruppe: 500 Naturwissenschaften
610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background: COVID-19 comprises several severity stages ranging from oligosymptomatic disease to multi-organ failure and fatal outcomes. The mechanisms why COVID-19 is a mild disease in some patients and progresses to a severe multi-organ and often fatal disease with respiratory failure are not known. Biomarkers that predict the course of disease are urgently needed. The aim of this study was to evaluate a large spectrum of established laboratory measurements. Patients and Methods: Patients from the prospective PULMPOHOM and CORSAAR studies were recruited and comprised 35 patients with COVID-19, 23 with conventional pneumonia, and 28 control patients undergoing elective non-pulmonary surgery. Venous blood was used to measure the serum concentrations of 79 proteins by Luminex multiplex immunoassay technology. Distribution of biomarkers between groups and association with disease severity and outcomes were analyzed. Results: The biomarker profiles between the three groups differed significantly with elevation of specific proteins specific for the respective conditions. Several biomarkers correlated significantly with disease severity and death. Uniform manifold approximation and projection (UMAP) analysis revealed a significant separation of the three disease groups and separated between survivors and deceased patients. Different models were developed to predict mortality based on the baseline measurements of several protein markers. A score combining IL-1ra, IL-8, IL-10, MCP-1, SCF and CA-9 was associated with significantly higher mortality (AUC 0.929). Discussion: Several newly identified blood markers were significantly increased in patients with severe COVID-19 (AAT, EN-RAGE, myoglobin, SAP, TIMP-1, vWF, decorin) or in patients that died (IL-1ra, IL-8, IL-10, MCP-1, SCF, CA-9). The use of established assay technologies allows for rapid translation into clinical practice.
DOI der Erstveröffentlichung: 10.2147/JIR.S320685
URL der Erstveröffentlichung: https://www.dovepress.com/distinct-patterns-of-blood-cytokines-beyond-a-cytokine-storm-predict-m-peer-reviewed-fulltext-article-JIR
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-374646
hdl:20.500.11880/33880
http://dx.doi.org/10.22028/D291-37464
ISSN: 1178-7031
Datum des Eintrags: 30-Sep-2022
Fakultät: M - Medizinische Fakultät
NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: M - Anästhesiologie
M - Infektionsmedizin
M - Innere Medizin
M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
M - Pädiatrie
NT - Pharmazie
Professur: M - Prof. Dr. Robert Bals
M - Univ.-Prof. Dr. Andreas Keller
M - Prof. Dr. Frank Lammert
M - Prof. Dr. Sigrun Smola
M - Dr. med. Dr. sc.nat. Timo Speer
M - Prof. Dr. Thomas Volk
M - Prof. Dr. Stefan Wagenpfeil
M - Prof. Dr. Michael Zemlin
NT - Prof. Dr. Rolf Müller
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.