Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37344
Volltext verfügbar? / Dokumentlieferung
Titel: Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films
VerfasserIn: Welsch, Felix
Ullrich, J.
Ossmer, Hinnerk
Schmidt, M.
Kohl, Manfred
Chluba, Christoph
Quandt, Eckhard
Schütze, Andreas
Seelecke, Stefan
Sprache: Englisch
Titel: Continuum mechanics and thermodynamics : analysis of complex materials and judicious evaluation of the environment
Bandnummer: 30
Heft: 1
Seiten: 53-68
Verlag/Plattform: Springer
Erscheinungsjahr: 2017
Freie Schlagwörter: Elastocaloric cooling
Shape memory alloy
TiNiCuCo thin film
Thermo-mechanical coupling
Rate dependence
Localization
DDC-Sachgruppe: 530 Physik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The exploitation of the elastocaloric effect in superelastic shape memory alloys (SMA) for cooling applications shows a promising energy efficiency potential but requires a better understanding of the non-homogeneous martensitic phase transformation. Temperature profiles on sputter-deposited superelastic Ti55.2Ni29.3Cu12.7Co2.8 shape memory alloy thin films show localized release and absorption of heat during phase transformation induced by tensile deformation with a strong rate dependence. In this paper, a model for the simulation of the thermo-mechanically coupled transformation behavior of superelastic SMA is proposed and its capability to reproduce the mechanical and thermal responses observed during experiments is shown. The procedure for experiment and simulation is designed such that a significant temperature change from the initial temperature is obtained to allow potential cooling applications. The simulation of non-local effects is enabled by the use of a model based on the one-dimensional Müller–Achenbach–Seelecke model, extended by 3D mechanisms such as lateral contraction and by non-local interaction, leading to localization effects. It is implemented into the finite element software COMSOL Multiphysics, and comparisons of numerical and experimental results show that the model is capable of reproducing the localized transformation behavior with the same strain rate dependency. Additionally to the thermal and the mechanical behavior, the quantitative prediction of cooling performance with the presented model is shown.
DOI der Erstveröffentlichung: 10.1007/s00161-017-0582-x
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s00161-017-0582-x
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-373447
hdl:20.500.11880/33814
http://dx.doi.org/10.22028/D291-37344
ISSN: 1432-0959
0935-1175
Datum des Eintrags: 23-Sep-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.