Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37315
Volltext verfügbar? / Dokumentlieferung
Titel: Industrial condition monitoring with smart sensors using automated feature extraction and selection
VerfasserIn: Schneider, Tizian
Helwig, Nikolai
Schütze, Andreas
Sprache: Englisch
Titel: Journal of sensors and sensor systems : JSSS
Bandnummer: 29
Heft: 9
Seiten: 489-506
Verlag/Plattform: Copernicus Publications
Erscheinungsjahr: 2018
DDC-Sachgruppe: 621.3 Elektrotechnik, Elektronik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Smart sensors with internal signal processing and machine learning capabilities are a current trend in sensor development. This paper suggests a set of complementary and automated algorithms for feature extraction and selection to be used with smart sensors. The suggested methods for feature extraction can be applied on smart sensors and are capable of extracting signal characteristics from signal shape, time domain, time-frequency domain, frequency domain and signal distribution. Feature selection subsequently is capable of selecting the most important features for linear and nonlinear fault classification. The paper also highlights the potential of smart sensors in combination with the suggested algorithms that provide both data and further functionality from self-monitoring to condition monitoring in industrial applications. The first example applications are condition monitoring of a complex hydraulic machine where smart signal processing allows classification and quantification of four different fault scenarios. Additionally redundancies in the systems were used for self-monitoring and allowed to detect simulated sensor faults before they become critical for fault classification. The second example application is remaining lifetime prediction of electromechanical cylinders that shows applicability to big data and transparency of the solution by providing detailed information about sensor significance.
DOI der Erstveröffentlichung: 10.1088/1361-6501/aad1d4/meta
URL der Erstveröffentlichung: https://iopscience.iop.org/article/10.1088/1361-6501/aad1d4/meta
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-373155
hdl:20.500.11880/33797
http://dx.doi.org/10.22028/D291-37315
ISSN: 2194-878X
2194-8771
Datum des Eintrags: 21-Sep-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.