Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37245
Volltext verfügbar? / Dokumentlieferung
Titel: Calibration of Metal Oxide Semiconductor Gas Sensors by High School Students
VerfasserIn: Höfner, Sebastian
Schütze, Andreas
Hirth, Michael
Kuhn, Jochen
Brück, Benjamin
Sprache: Englisch
Titel: International journal of online and biomedical engineering
Bandnummer: 17
Heft: 04
Seiten: 4-20
Verlag/Plattform: Kassel University Press
Erscheinungsjahr: 2021
Freie Schlagwörter: Air pollution
Calibration
Electrochemical sensors
Environmental monitor-ing
Machine learning
Neural networks
Sensor phenomena and applications
Signal analysis
Student experiment
DDC-Sachgruppe: 620 Ingenieurwissenschaften und Maschinenbau
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: A wide range of pollutants cannot be perceived with human senses, which is why the use of gas sensors is indispensable for an objective assessment of air quality. Since many pollutants are both odorless and colorless, there is a lack of awareness, in particular among students. The project SUSmobil (funded by DBU – Deutsche Bundesstiftung Umwelt) aims to change this. In three modules on the topic of gas sensors and air quality, the students (a) learn the functionality of a metal oxide semiconductor (MOS) gas sensor, (b) perform a calibration process and (c) carry out environmental measurements with calibrated sensors. Based on these introductory experiments, the students are encouraged to develop their own environmental questions. In this paper, the student experiment for the calibration of a MOS gas sensor for ethanol is discussed. The experiment, designed as an HTML-based learning, addresses both theoretical and practical aspects of a typical sensor calibration process, consisting of data acquisition, feature extraction and model generation. In this example, machine learning is used for generating the evaluation model as existing physical models are not sufficiently exact.
DOI der Erstveröffentlichung: 10.3991/ijoe.v17i04.19215
URL der Erstveröffentlichung: https://online-journals.org/index.php/i-joe/article/view/19215
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-372451
hdl:20.500.11880/33761
http://dx.doi.org/10.22028/D291-37245
ISSN: 2626-8493
Datum des Eintrags: 16-Sep-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.