Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37090
Titel: Emotion Regulation Flexibility and Electronic Patient-Reported Outcomes : A Framework for Understanding Symptoms and Affect Dynamics in Pediatric Psycho-Oncology
VerfasserIn: Mirzaie, Kasra
Burns-Gebhart, Anna
Meyerheim, Marcel
Sander, Annette
Graf, Norbert
Sprache: Englisch
Titel: Cancers
Bandnummer: 14
Heft: 16
Verlag/Plattform: MDPI
Erscheinungsjahr: 2022
Freie Schlagwörter: emotion regulation
affect dynamics
electronic patient-reported outcomes
early warning signals
dynamical systems theory
pediatric psycho-oncology
pediatric cancer
adolescents and young adults
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Emotion dysregulation is regarded as a driving mechanism for the development of mental health problems and psychopathology. The role of emotion regulation (ER) in the management of cancer distress and quality of life (QoL) has recently been recognized in psycho-oncology. The latest technological advances afford ways to assess ER, affective experiences and QoL in child, adolescent and young adult (CAYA) cancer patients through electronic patient-reported outcomes (ePRO) in their daily environment in real-time. Such tools facilitate ways to study the dynamics of affect and the flexibility of ER. However, technological advancement is not risk-free. We critically review the literature on ePRO in cancer existing models of ER in pediatric psycho-oncology and analyze strength, weaknesses, opportunities and threats of ePRO with a focus on CAYA cancer research and care. Supported by personal study-based experiences, this narrative review serves as a foundation to propose a novel methodological and metatheoretical framework based on: (a) an extended notion of ER, which includes its dynamic, adaptive and flexible nature and focuses on processes and conditions rather than fixed categorical strategies; (b) ePRO as a means to measure emotion regulation flexibility and affect dynamics; (c) identifying early warning signals for symptom change via ePRO and building forecasting models using dynamical systems theory.
URL der Erstveröffentlichung: 10.3390/cancers14163874
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-370902
hdl:20.500.11880/33672
http://dx.doi.org/10.22028/D291-37090
ISSN: 2072-6694
Datum des Eintrags: 26-Aug-2022
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Pädiatrie
Professur: M - Prof. Dr. Norbert Graf
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
cancers-14-03874.pdf1,31 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons