Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-37089
Titel: | Physiologically Based Pharmacokinetic Modeling to Describe the CYP2D6 Activity Score-Dependent Metabolism of Paroxetine, Atomoxetine and Risperidone |
VerfasserIn: | Rüdesheim, Simeon Selzer, Dominik Mürdter, Thomas Igel, Svitlana Kerb, Reinhold Schwab, Matthias Lehr, Thorsten |
Sprache: | Englisch |
Titel: | Pharmaceutics |
Bandnummer: | 14 |
Heft: | 8 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2022 |
Freie Schlagwörter: | physiologically based pharmacokinetic (PBPK) modeling paroxetine atomoxetine risperidone cytochrome P450 2D6 (CYP2D6) |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | The cytochrome P450 2D6 (CYP2D6) genotype is the single most important determinant of CYP2D6 activity as well as interindividual and interpopulation variability in CYP2D6 activity. Here, the CYP2D6 activity score provides an established tool to categorize the large number of CYP2D6 alleles by activity and facilitates the process of genotype-to-phenotype translation. Compared to the broad traditional phenotype categories, the CYP2D6 activity score additionally serves as a superior scale of CYP2D6 activity due to its finer graduation. Physiologically based pharmacokinetic (PBPK) models have been successfully used to describe and predict the activity score-dependent metabolism of CYP2D6 substrates. This study aimed to describe CYP2D6 drug–gene interactions (DGIs) of important CYP2D6 substrates paroxetine, atomoxetine and risperidone by developing a substrate-independent approach to model their activity score-dependent metabolism. The models were developed in PK-Sim®, using a total of 57 plasma concentration–time profiles, and showed good performance, especially in DGI scenarios where 10/12, 5/5 and 7/7 of DGI AUClast ratios and 9/12, 5/5 and 7/7 of DGI Cmax ratios were within the prediction success limits. Finally, the models were used to predict their compound’s exposure for different CYP2D6 activity scores during steady state. Here, predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 (poor metabolizers; activity score = 0) and 0.2, 0.5 and 0.95 (ultrarapid metabolizers; activity score = 3) for paroxetine, atomoxetine and risperidone active moiety (risperidone + 9-hydroxyrisperidone), respectively. |
DOI der Erstveröffentlichung: | 10.3390/pharmaceutics14081734 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-370899 hdl:20.500.11880/33671 http://dx.doi.org/10.22028/D291-37089 |
ISSN: | 1999-4923 |
Datum des Eintrags: | 26-Aug-2022 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary Materials |
In Beziehung stehendes Objekt: | https://www.mdpi.com/article/10.3390/pharmaceutics14081734/s1 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Pharmazie |
Professur: | NT - Prof. Dr. Thorsten Lehr |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
pharmaceutics-14-01734-v2.pdf | 3,16 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons