Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37089
Titel: Physiologically Based Pharmacokinetic Modeling to Describe the CYP2D6 Activity Score-Dependent Metabolism of Paroxetine, Atomoxetine and Risperidone
VerfasserIn: Rüdesheim, Simeon
Selzer, Dominik
Mürdter, Thomas
Igel, Svitlana
Kerb, Reinhold
Schwab, Matthias
Lehr, Thorsten
Sprache: Englisch
Titel: Pharmaceutics
Bandnummer: 14
Heft: 8
Verlag/Plattform: MDPI
Erscheinungsjahr: 2022
Freie Schlagwörter: physiologically based pharmacokinetic (PBPK) modeling
paroxetine
atomoxetine
risperidone
cytochrome P450 2D6 (CYP2D6)
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The cytochrome P450 2D6 (CYP2D6) genotype is the single most important determinant of CYP2D6 activity as well as interindividual and interpopulation variability in CYP2D6 activity. Here, the CYP2D6 activity score provides an established tool to categorize the large number of CYP2D6 alleles by activity and facilitates the process of genotype-to-phenotype translation. Compared to the broad traditional phenotype categories, the CYP2D6 activity score additionally serves as a superior scale of CYP2D6 activity due to its finer graduation. Physiologically based pharmacokinetic (PBPK) models have been successfully used to describe and predict the activity score-dependent metabolism of CYP2D6 substrates. This study aimed to describe CYP2D6 drug–gene interactions (DGIs) of important CYP2D6 substrates paroxetine, atomoxetine and risperidone by developing a substrate-independent approach to model their activity score-dependent metabolism. The models were developed in PK-Sim®, using a total of 57 plasma concentration–time profiles, and showed good performance, especially in DGI scenarios where 10/12, 5/5 and 7/7 of DGI AUClast ratios and 9/12, 5/5 and 7/7 of DGI Cmax ratios were within the prediction success limits. Finally, the models were used to predict their compound’s exposure for different CYP2D6 activity scores during steady state. Here, predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 (poor metabolizers; activity score = 0) and 0.2, 0.5 and 0.95 (ultrarapid metabolizers; activity score = 3) for paroxetine, atomoxetine and risperidone active moiety (risperidone + 9-hydroxyrisperidone), respectively.
DOI der Erstveröffentlichung: 10.3390/pharmaceutics14081734
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-370899
hdl:20.500.11880/33671
http://dx.doi.org/10.22028/D291-37089
ISSN: 1999-4923
Datum des Eintrags: 26-Aug-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/pharmaceutics14081734/s1
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Pharmazie
Professur: NT - Prof. Dr. Thorsten Lehr
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
pharmaceutics-14-01734-v2.pdf3,16 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons