Please use this identifier to cite or link to this item: doi:10.22028/D291-36771
Volltext verfügbar? / Dokumentlieferung
Title: Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev–Petviashvili equation
Author(s): Ehrnström, Mats
Groves, Mark
Language: English
Title: Nonlinearity
Volume: 31
Issue: 12
Startpage: 5351
Endpage: 5384
Publisher/Platform: IOP Publishing
Year of Publication: 2018
DDC notations: 510 Mathematics
530 Physics
Publikation type: Journal Article
Abstract: The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with strong surface tension (Bond number ). This equation admits—as an explicit solution—a 'fully localised' or 'lump' solitary wave which decays to zero in all spatial directions. Recently there has been interest in the full-dispersion KP-I equation where is the Fourier multiplier with symbol which is obtained by retaining the exact dispersion relation from the water-wave problem. In this paper we show that the FDKP-I equation also has a fully localised solitary-wave solution. The existence theory is variational and perturbative in nature. A variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the variational functional associated with fully localised solitary-wave solutions of the KP-I equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.
DOI of the first publication: 10.1088/1361-6544
URL of the first publication:
Link to this record: urn:nbn:de:bsz:291--ds-367713
ISSN: 1361-6544
Date of registration: 12-Jul-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Mark Groves
Collections:Die Universitätsbibliographie

Files for this record:
There are no files associated with this item.

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.