Titel: | Swarm Learning for decentralized and confidential clinical machine learning |
VerfasserIn: | Warnat-Herresthal, Stefanie Schultze, Hartmut Shastry, Krishnaprasad Lingadahalli Manamohan, Sathyanarayanan Mukherjee, Saikat Garg, Vishesh Sarveswara, Ravi Händler, Kristian Pickkers, Peter Aziz, N. Ahmad Ktena, Sofia Tran, Florian Bitzer, Michael Ossowski, Stephan Casadei, Nicolas Herr, Christian Petersheim, Daniel Behrends, Uta Kern, Fabian Fehlmann, Tobias Schommers, Philipp Lehmann, Clara Augustin, Max Rybniker, Jan Altmüller, Janine Mishra, Neha Bernardes, Joana P. Krämer, Benjamin Bonaguro, Lorenzo Schulte-Schrepping, Jonas De Domenico, Elena Siever, Christian Kraut, Michael Desai, Milind Monnet, Bruno Saridaki, Maria Siegel, Charles Martin Drews, Anna Nuesch-Germano, Melanie Theis, Heidi Heyckendorf, Jan Schreiber, Stefan Kim-Hellmuth, Sarah Nattermann, Jacob Skowasch, Dirk Kurth, Ingo Keller, Andreas Bals, Robert Nürnberg, Peter Rieß, Olaf Rosenstiel, Philip Netea, Mihai G. Theis, Fabian Mukherjee, Sach Backes, Michael Aschenbrenner, Anna C. Ulas, Thomas Breteler, Monique M. B. Giamarellos-Bourboulis, Evangelos J. Kox, Matthijs Becker, Matthias Cheran, Sorin Woodacre, Michael S. Goh, Eng Lim Schultze, Joachim L. |
Sprache: | Englisch |
Titel: | Nature |
Bandnummer: | 594 |
Heft: | 7862 |
Seiten: | 265–270 |
Verlag/Plattform: | Springer Nature |
Erscheinungsjahr: | 2021 |
Freie Schlagwörter: | Computational models Diagnostic markers Machine learning Predictive medicine Viral infection |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Fast and reliable detection of patients with severe and heterogeneous illnesses is a
major goal of precision medicine1,2
. Patients with leukaemia can be identifed using
machine learning on the basis of their blood transcriptomes3
. However, there is an
increasing divide between what is technically possible and what is allowed, because of
privacy legislation4,5
. Here, to facilitate the integration of any medical data from any
data owner worldwide without violating privacy laws, we introduce Swarm
Learning—a decentralized machine-learning approach that unites edge computing,
blockchain-based peer-to-peer networking and coordination while maintaining
confdentiality without the need for a central coordinator, thereby going beyond
federated learning. To illustrate the feasibility of using Swarm Learning to develop
disease classifers using distributed data, we chose four use cases of heterogeneous
diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than
16,400 blood transcriptomes derived from 127 clinical studies with non-uniform
distributions of cases and controls and substantial study biases, as well as more than
95,000 chest X-ray images, we show that Swarm Learning classifers outperform those
developed at individual sites. In addition, Swarm Learning completely fulfls local
confdentiality regulations by design. We believe that this approach will notably
accelerate the introduction of precision medicine. |
DOI der Erstveröffentlichung: | 10.1038/s41586-021-03583-3 |
URL der Erstveröffentlichung: | https://www.nature.com/articles/s41586-021-03583-3 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-367598 hdl:20.500.11880/33401 http://dx.doi.org/10.22028/D291-36759 |
ISSN: | 1476-4687 0028-0836 |
Datum des Eintrags: | 11-Jul-2022 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary information |
In Beziehung stehendes Objekt: | https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM1_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM2_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM3_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM4_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM5_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM6_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM7_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM8_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM9_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM10_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03583-3/MediaObjects/41586_2021_3583_MOESM11_ESM.xlsx |
Fakultät: | M - Medizinische Fakultät |
Fachrichtung: | M - Innere Medizin M - Medizinische Biometrie, Epidemiologie und medizinische Informatik |
Professur: | M - Prof. Dr. Robert Bals M - Univ.-Prof. Dr. Andreas Keller |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes
|