Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-36626
Titel: | Short term load forecasting using hybrid adaptive fuzzy neural system: The performance evaluation |
VerfasserIn: | Minhas, Daud Mustafa Khalid, Raja Rehan Frey, Georg |
Sprache: | Englisch |
Titel: | Theme: "Harnessing energy, information and communications technology (ICT) for affordable electrification of Africa" : 2017 IEEE PES‐IAS PowerAfrica Conference : 27-30 June 2017, Accra, Ghana : conference proceedings |
Startseite: | 468 |
Endseite: | 473 |
Verlag/Plattform: | IEEE |
Erscheinungsjahr: | 2017 |
Erscheinungsort: | Piscataway |
Konferenzort: | Accra, Ghana |
Freie Schlagwörter: | Forecasting Load modeling Load forecasting Linear regression Predictive models Temperature distribution Neural networks |
DDC-Sachgruppe: | 600 Technik |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | In this paper, an evaluation theory of hybrid model for short-term electricity load forecasting is presented using simple soft-technique of predicting data. A model that integrates fuzzy system with neural network database is demonstrated and eventually compared with a traditional statistical method of linear regression. Power load forecasting errors especially for weekends, which is much higher than that of weekdays, is reduced using the probabilistic and stochastic natured Hybrid Adaptive Fuzzy Neural System (HAFNS) method. Neural network database uses temperature and power loads as predictors to train the data sets and then use fuzzy system to develop membership functions, forecasting future power load demands for subsequent hours. HAFNS model is made using power load and temperature data of 2015. The training and testing set of HAFNS is composed of yearly data, which may be decomposed on monthly, daily and hourly basis for comparison. The simulation results of the forecasted data including error distribution graphs are demonstrated. |
DOI der Erstveröffentlichung: | 10.1109/PowerAfrica.2017.7991270 |
URL der Erstveröffentlichung: | https://ieeexplore.ieee.org/document/7991270 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-366266 hdl:20.500.11880/33269 http://dx.doi.org/10.22028/D291-36626 |
ISBN: | 978-1-5090-4746-8 978-1-5090-4747-5 |
Datum des Eintrags: | 5-Jul-2022 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Georg Frey |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.