Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-36620
Titel: | Load control for supply-demand balancing under Renewable Energy forecasting |
VerfasserIn: | Minhas, Daud Mustafa Khalid, Raja Rehan Frey, Georg |
Sprache: | Englisch |
Titel: | 2017 IEEE Second International Conference on Direct Current Microgrids : June 27-29, 2017, NH Collection, Nürnberg City, Nürnberg, Germany |
Startseite: | 365 |
Endseite: | 370 |
Verlag/Plattform: | IEEE |
Erscheinungsjahr: | 2017 |
Erscheinungsort: | Piscataway |
Konferenzort: | Nürnberg, Germany |
Freie Schlagwörter: | Support vector machines Predictive models Load modeling Supply and demand Uncertainty Wind speed Data models |
DDC-Sachgruppe: | 600 Technik |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | This paper integrates the conception of forecasting Renewable Energy (RE) sources and the user's load demands with intelligent Demand Side Management (DSM) under smart DC micro-grid (SDMG) architecture. The RE are mainly consisting of intermittent solar and wind generators, while the load demands are classified as base (uncontrollable) loads and flexible (controllable) loads. The base loads are priority loads and are served in real time, while flexible loads could be operated intelligently according to the availability of the supply. We integrate a day-ahead prediction mechanism for RE, so that we can schedule a day-ahead consumption accordingly. Practically, these predictions are attained with certain level of forecasting errors, causing imbalance in supply and demands at real-time. This imbalance also known as RE uncertainty, will make the power system unstable. To address the dynamic behavior of SDMG and to balance supply and demands, we propose a novel robust control strategy for controllable flexible demands. To simplify our system we make the generation and demands deterministic, by employing intelligence of Support Vector Machine (SVM) learning algorithm. We then incorporate SVM with novel Sliding Mode Control (SMC) for scheduling consumer's flexible loads to make DSM more efficient and accurate. The energy allocation mechanism to consumer demands is made analogous to non-linear fluid flow model. The simulations have established an effective forecasted data using SVM and efficient balancing results of supply and demand using SMC. |
DOI der Erstveröffentlichung: | 10.1109/ICDCM.2017.8001071 |
URL der Erstveröffentlichung: | https://ieeexplore.ieee.org/abstract/document/8001071 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-366200 hdl:20.500.11880/33264 http://dx.doi.org/10.22028/D291-36620 |
ISBN: | 978-1-5090-4479-5 978-1-5090-4480-1 |
Datum des Eintrags: | 4-Jul-2022 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Georg Frey |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.