Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35719
Volltext verfügbar? / Dokumentlieferung
Titel: Automated optimization of XCMS parameters for improved peak picking of liquid chromatography-mass spectrometry data using the coefficient of variation and parameter sweeping for untargeted metabolomics
VerfasserIn: Manier, Sascha K.
Keller, Andreas
Meyer, Markus R.
Sprache: Englisch
Titel: Drug Testing and Analysis
Bandnummer: 11
Heft: 6
Seiten: 752–761
Verlag/Plattform: Wiley
Erscheinungsjahr: 2018
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Accurate peak picking and further processing is a current challenge in the analysis of untargeted metabolomics using liquid chromatography–mass spectrometry (LC–MS) data. The optimization of these processes is crucial to obtain proper results. This study investigated and optimized the detection of peaks by XCMS, a widely used R package for peak picking and processing of high-resolution LC–MS metabolomics data by their coefficient of variation using neat standard solutions of drug like compounds. The obtained results were additionally verified by using fortified pooled plasma samples. Settings of the mass spectrometer were optimized by recommendations in literature to enable a reliable detection of the investigated analytes. XCMS parameters were evaluated using a comprehensive parameter sweeping approach. The optimization steps were statistically evaluated and further visualized after principal component analysis (PCA). Concerning the lower concentrated solution in methanol samples, the optimization of both mass spectrometer and XCMS parameters improved the median coefficient of variation from 24% to 7%, retention time fluctuation from 9.3 seconds to 0.54 seconds, and fluctuation of the mass to charge ratio (m/z) from m/z 0.00095 to m/z 0.00028. The number of parent compounds and their related species annotated by CAMERA increased from 88 to 113 while the total amount of features decreased from 3282 to 428. Optimized MS settings such as increased resolution led to a higher specificity of peak picking. PCA supported these findings by showing the best clustering of samples after optimization of both mass spectrometer and XCMS parameters. The results implied that peak picking needs to be individually adapted for the experimental set up. Reducing unwanted variation in the data set was most successful after combining high resolving power with strict peak picking settings.
DOI der Erstveröffentlichung: 10.1002/dta.2552
URL der Erstveröffentlichung: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.2552
Link zu diesem Datensatz: hdl:20.500.11880/32583
http://dx.doi.org/10.22028/D291-35719
ISSN: 1942-7611
1942-7603
Datum des Eintrags: 11-Mär-2022
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Experimentelle und Klinische Pharmakologie und Toxikologie
M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
M - Prof. Dr. Markus Meyer
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.