Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35554
Titel: Clinical Resistome Screening of 1,110 Escherichia coli Isolates Efficiently Recovers Diagnostically Relevant Antibiotic Resistance Biomarkers and Potential Novel Resistance Mechanisms
VerfasserIn: Volz, Carsten
Ramoni, Jonas
Beisken, Stephan
Galata, Valentina
Keller, Andreas
Plum, Achim
Posch, Andreas E.
Müller, Rolf
Sprache: Englisch
Titel: Frontiers in Microbiology
Bandnummer: 10
Verlag/Plattform: Frontiers
Erscheinungsjahr: 2019
Freie Schlagwörter: functional metagenomics
antibiotic resistance
high-throughput screening
biomarkers
bioinformatics
biostatistics
next-generation sequencing
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Multidrug-resistant pathogens represent one of the biggest global healthcare challenges. Molecular diagnostics can guide effective antibiotics therapy but relies on validated, predictive biomarkers. Here we present a novel, universally applicable workflow for rapid identification of antimicrobial resistance (AMR) biomarkers from clinical Escherichia coli isolates and quantitatively evaluate the potential to recover causal biomarkers for observed resistance phenotypes. For this, a metagenomic plasmid library from 1,110 clinical E. coli isolates was created and used for high-throughput screening to identify biomarker candidates against Tobramycin (TOB), Ciprofloxacin (CIP), and Trimethoprim Sulfamethoxazole (TMP-SMX). Identified candidates were further validated in vitro and also evaluated in silico for their diagnostic performance based on matched genotype phenotype data. AMR biomarkers recovered by the metagenomics screening approach mechanistically explained 77% of observed resistance phenotypes for Tobramycin, 76% for Trimethoprim-Sulfamethoxazole, and 20% Ciprofloxacin. Sensitivity for Ciprofloxacin resistance detection could be improved to 97% by complementing results with AMR biomarkers that are undiscoverable due to intrinsic limitations of the workflow. Additionally, when combined in a multiplex diagnostic in silico panel, the identified AMR biomarkers reached promising positive and negative predictive values of up to 97 and 99%, respectively. Finally, we demonstrate that the developed workflow can be used to identify potential novel resistance mechanisms.
DOI der Erstveröffentlichung: 10.3389/fmicb.2019.01671
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-355547
hdl:20.500.11880/32442
http://dx.doi.org/10.22028/D291-35554
ISSN: 1664-302X
Datum des Eintrags: 23-Feb-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Material
In Beziehung stehendes Objekt: https://ndownloader.figstatic.com/files/17200547
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
fmicb-10-01671.pdf4,63 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons