Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-35211
Titel: | Tree tensor networks for high-dimensional quantum systems and beyond |
VerfasserIn: | Felser, Timo |
Sprache: | Englisch |
Erscheinungsjahr: | 2021 |
DDC-Sachgruppe: | 530 Physik |
Dokumenttyp: | Dissertation |
Abstract: | This thesis presents the development of a numerical simulation technique, the Tree Tensor Network, aiming to overcome current limitations in the simulation of two- and higher-dimensional quantum many-body systems. The development and application of methods based on Tensor Networks (TNs) for such systems are one of the most relevant challenges of the current decade with the potential to promote research and technologies in a broad range of fields ranging from condensed matter physics, high-energy physics, and quantum chemistry to quantum computation and quantum simulation. The particular challenge for TNs is the combination of accuracy and scalability which to date are only met for one-dimensional systems by other established TN techniques. This thesis first describes the interdisciplinary field of TN by combining mathematical modelling, computational science, and quantum information before it illustrates the limitations of standard TN techniques in higher-dimensional cases. Following a description of the newly developed Tree Tensor Network (TTN), the thesis then presents its application to study a lattice gauge theory approximating the low-energy behaviour of quantum electrodynamics, demonstrating the successful applicability of TTNs for high-dimensional gauge theories. Subsequently, a novel TN is introduced augmenting the TTN for efficient simulations of high-dimensional systems. Along the way, the TTN is applied to problems from various fields ranging from low-energy to high-energy up to medical physics. In dieser Arbeit wird die Entwicklung einer numerischen Simulationstechnik, dem Tree Tensor Network (TTN), vorgestellt, die darauf abzielt, die derzeitigen Limitationen bei der Simulation von zwei- und höherdimensionalen Quanten-Vielteilchensystemen zu überwinden. Die Weiterentwicklung von auf Tensor-Netzwerken (TN) basierenden Methoden für solche Systeme ist eine der aktuellsten und relevantesten Herausforderungen. Sie birgt das Potential, Forschung und Technologien in einem breiten Spektrum zu fördern, welches sich von der Physik der kondensierten Materie, der Hochenergiephysik und der Quantenchemie bis hin zur Quantenberechnung und Quantensimulation erstreckt. Die besondere Herausforderung für TN ist die Kombination von Genauigkeit und Skalierbarkeit, die bisher nur für eindimensionale Systeme erfüllt wird. Diese Arbeit beschreibt zunächst das interdisziplinäre Gebiet der TN als eine Kombination von mathematischer Modellierung, Computational Science und Quanteninformation, um dann die Grenzen der Standard-TN-Techniken in höherdimensionalen Fällen aufzuzeigen. Nach einer Beschreibung des neu entwickelten TTN stellt die Arbeit dessen Anwendung zur Untersuchung einer Gittereichtheorie vor, die das Niederenergieverhalten der Quantenelektrodynamik approximiert und somit die erfolgreiche Anwendbarkeit von TTNs für hochdimensionale Eichtheorien demonstriert. Anschließend wird ein neuartiges TN eingeführt, welches das TTN für effiziente Simulationen hochdimensionaler Systeme erweitert. Zusätzlich wird das TTN auf diverse Probleme angewandt, die von Niederenergie- über Hochenergie- bis hin zur medizinischen Physik reichen. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-352118 hdl:20.500.11880/32219 http://dx.doi.org/10.22028/D291-35211 |
Erstgutachter: | Morigi, Giovanna |
Tag der mündlichen Prüfung: | 30-Nov-2021 |
Datum des Eintrags: | 20-Jan-2022 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Physik |
Professur: | NT - Prof. Dr. Giovanna Morigi |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
thesis_Saarbr.pdf | Doctoral Thesis - Felser | 68,74 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons