Please use this identifier to cite or link to this item: doi:10.22028/D291-35046
Title: Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques
Author(s): Müller, Martin
Britz, Dominik
Staudt, Thorsten
Mücklich, Frank
Language: English
Title: Metals
Volume: 11
Issue: 11
Publisher/Platform: MDPI
Year of Publication: 2021
Free key words: microstructure classification
machine learning
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: With its excellent property combinations and ability to specifically adjust tailor-made microstructures, steel is still the world’s most important engineering and construction material. To fulfill ever-increasing demands and tighter tolerances in today’s steel industry, steel research remains indispensable. The continuous material development leads to more and more complex microstruc tures, which is especially true for steel designs that include bainitic structures. This poses new challenges for the classification and quantification of these microstructures. Machine learning (ML) based microstructure classification offers exciting potentials in this context. This paper is concerned with the automated, objective, and reproducible classification of the carbon-rich second phase objects in multi-phase steels by using machine learning techniques. For successful applications of ML-based classifications, a holistic approach combining computer science expertise and material science domain knowledge is necessary. Seven microstructure classes are considered: pearlite, martensite, and the bainitic subclasses degenerate pearlite, debris of cementite, incomplete transformation product, and upper and lower bainite, which can all be present simultaneously in one micrograph. Based on SEM images, textural features (Haralick parameters and local binary pattern) and morphological parame ters are calculated and classified with a support vector machine. Of all second phase objects, 82.9% are classified correctly. Regarding the total area of these objects, 89.2% are classified correctly. The reported classification can be the basis for an improved, sophisticated microstructure quantification, enabling process–microstructure–property correlations to be established and thereby forming the backbone of further, microstructure-centered material development.
DOI of the first publication: 10.3390/met11111836
Link to this record: urn:nbn:de:bsz:291--ds-350463
ISSN: 2075-4701
Date of registration: 5-Jan-2022
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Frank Mücklich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
metals-11-01836.pdf3,03 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons