Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-35055
Titel: | Deep latent-variable models for neural text generation |
VerfasserIn: | Shen, Xiaoyu |
Sprache: | Englisch |
Erscheinungsjahr: | 2021 |
DDC-Sachgruppe: | 004 Informatik 500 Naturwissenschaften 600 Technik |
Dokumenttyp: | Dissertation |
Abstract: | Text generation aims to produce human-like natural language output for down-stream tasks. It covers a wide range of applications like machine translation, document summarization, dialogue generation and so on. Recently deep neural network-based end-to-end architectures are known to be data-hungry, and text generated from them usually suffer from low diversity, interpretability and controllability. As a result, it is difficult to trust the output from them in real-life applications. Deep latent-variable models, by specifying the probabilistic distribution over an intermediate latent process, provide a potential way of addressing these problems while maintaining the expressive power of deep neural networks. This presentation will explain how deep latent-variable models can improve over the standard encoder-decoder model for text generation. We will start from an introduction of encoder-decoder and deep latent-variable models, then go over popular optimization strategies, and finally elaborate on how latent variable models can help improve the diversity, interpretability and data efficiency in different applications of text generation tasks. Textgenerierung zielt darauf ab, eine menschenähnliche Textausgabe in natürlicher Sprache für Anwendungen zu erzeugen. Es deckt eine breite Palette von Anwendungen ab, wie maschinelle Übersetzung, Zusammenfassung von Dokumenten, Generierung von Dialogen usw. In letzter Zeit werden dafür hauptsächlich Endto- End-Architekturen auf der Basis von tiefen neuronalen Netzwerken verwendet. Der End-to-End-Ansatz fasst alle Submodule, die früher nach komplexen handgefertigten Regeln entworfen wurden, zu einer ganzheitlichen Codierungs- Decodierungs-Architektur zusammen. Bei ausreichenden Trainingsdaten kann eine Leistung auf dem neuesten Stand der Technik erzielt werden, ohne dass sprach- und domänenabhängiges Wissen erforderlich ist. Deep-Learning-Modelle sind jedoch als extrem datenhungrig bekannt und daraus generierter Text leidet normalerweise unter geringer Diversität, Interpretierbarkeit und Kontrollierbarkeit. Infolgedessen ist es schwierig, der Ausgabe von ihnen in realen Anwendungen zu vertrauen. Tiefe Modelle mit latenten Variablen bieten durch Angabe der Wahrscheinlichkeitsverteilung über einen latenten Zwischenprozess eine potenzielle Möglichkeit, diese Probleme zu lösen und gleichzeitig die Ausdruckskraft tiefer neuronaler Netze zu erhalten. Diese Dissertation zeigt, wie tiefe Modelle mit latenten Variablen Texterzeugung verbessern gegenüber dem üblichen Encoder-Decoder-Modell. Wir beginnen mit einer Einführung in Encoder-Decoder- und Deep Latent Variable-Modelle und gehen dann auf gängige Optimierungsstrategien wie Variationsinferenz, dynamische Programmierung, Soft Relaxation und Reinforcement Learning ein. Danach präsentieren wir Folgendes: 1. Wie latente Variablen Vielfalt der Texterzeugung verbessern können, indem ganzheitliche, latente Darstellungen auf Satzebene gelernt werden. Auf diese Weise kann zunächst eine latente Darstellung ausgewählt werden, aus der verschiedene Texte generiert werden können. Wir präsentieren effektive Algorithmen, um gleichzeitig das Lernen der Repräsentation und die Texterzeugung durch Variationsinferenz zu trainieren. Um die Einschränkungen der Variationsinferenz bezüglich Uni-Modalität und Inkonsistenz anzugehen, schlagen wir eine Wake-Sleep-Variation und ein auf Transinformation basierendes Trainingsziel vor. Experimente zeigen, dass sie sowohl die übliche Variationsinferenz als auch nicht-latente Variablenmodelle bei der Dialoggenerierung übertreffen. 2. Wie latente Variablen die Steuerbarkeit und Interpretierbarkeit der Texterzeugung verbessern können, indem feinkörnigere latente Spezifikationen zum Zwischengenerierungsprozess hinzugefügt werden. Wir veranschaulichen die Verwendung latenter Variablen für Wortausrichtung, Inhaltsauswahl, Textsegmentierung und Feldsegmentkorrespondenz. Wir leiten für sie effiziente Trainingsalgorithmen ab, damit die Texterzeugung explizit gesteuert werden kann, indem die latente Variable, die durch ihre Definition vom Menschen interpretiert werden kann, manipuliert wird. 3. Überwindung der Seltenheit von Trainingsmustern durch Behandlung von nicht parallelem Text als latente Variablen. Das Training kann wie beim Standard-EM-Algorithmus durchgeführt werden, der stabil konvergiert. Wir zeigen, dass es bei der Dialoggenerierung erfolgreich angewendet werden kann und den Generierungsraum durch die Verwendung von nicht-konversativem Text erheblich bereichert. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-350558 hdl:20.500.11880/32106 http://dx.doi.org/10.22028/D291-35055 |
Erstgutachter: | Klakow, Dietrich |
Tag der mündlichen Prüfung: | 5-Nov-2021 |
Datum des Eintrags: | 23-Dez-2021 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
combinepdf.pdf | thesis pdf | 5 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons