Please use this identifier to cite or link to this item: doi:10.22028/D291-34961
Title: Real-time human performance capture and synthesis
Author(s): Habermann, Marc
Language: English
Year of Publication: 2021
Free key words: human synthesis
computer vision
human performance capture
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: Most of the images one finds in the media, such as on the Internet or in textbooks and magazines, contain humans as the main point of attention. Thus, there is an inherent necessity for industry, society, and private persons to be able to thoroughly analyze and synthesize the human-related content in these images. One aspect of this analysis and subject of this thesis is to infer the 3D pose and surface deformation, using only visual information, which is also known as human performance capture. Human performance capture enables the tracking of virtual characters from real-world observations, and this is key for visual effects, games, VR, and AR, to name just a few application areas. However, traditional capture methods usually rely on expensive multi-view (marker-based) systems that are prohibitively expensive for the vast majority of people, or they use depth sensors, which are still not as common as single color cameras. Recently, some approaches have attempted to solve the task by assuming only a single RGB image is given. Nonetheless, they can either not track the dense deforming geometry of the human, such as the clothing layers, or they are far from real time, which is indispensable for many applications. To overcome these shortcomings, this thesis proposes two monocular human performance capture methods, which for the first time allow the real-time capture of the dense deforming geometry as well as an unseen 3D accuracy for pose and surface deformations. At the technical core, this work introduces novel GPU-based and data-parallel optimization strategies in conjunction with other algorithmic design choices that are all geared towards real-time performance at high accuracy. Moreover, this thesis presents a new weakly supervised multiview training strategy combined with a fully differentiable character representation that shows superior 3D accuracy. However, there is more to human-related Computer Vision than only the analysis of people in images. It is equally important to synthesize new images of humans in unseen poses and also from camera viewpoints that have not been observed in the real world. Such tools are essential for the movie industry because they, for example, allow the synthesis of photo-realistic virtual worlds with real-looking humans or of contents that are too dangerous for actors to perform on set. But also video conferencing and telepresence applications can benefit from photo-real 3D characters, as they can enhance the immersive experience of these applications. Here, the traditional Computer Graphics pipeline for rendering photo-realistic images involves many tedious and time-consuming steps that require expert knowledge and are far from real time. Traditional rendering involves character rigging and skinning, the modeling of the surface appearance properties, and physically based ray tracing. Recent learning-based methods attempt to simplify the traditional rendering pipeline and instead learn the rendering function from data resulting in methods that are easier accessible to non-experts. However, most of them model the synthesis task entirely in image space such that 3D consistency cannot be achieved, and/or they fail to model motion- and view-dependent appearance effects. To this end, this thesis presents a method and ongoing work on character synthesis, which allow the synthesis of controllable photoreal characters that achieve motion- and view-dependent appearance effects as well as 3D consistency and which run in real time. This is technically achieved by a novel coarse-to-fine geometric character representation for efficient synthesis, which can be solely supervised on multi-view imagery. Furthermore, this work shows how such a geometric representation can be combined with an implicit surface representation to boost synthesis and geometric quality.
In den meisten Bildern in den heutigen Medien, wie dem Internet, Büchern und Magazinen, ist der Mensch das zentrale Objekt der Bildkomposition. Daher besteht eine inhärente Notwendigkeit für die Industrie, die Gesellschaft und auch für Privatpersonen, die auf den Mensch fokussierten Eigenschaften in den Bildern detailliert analysieren und auch synthetisieren zu können. Ein Teilaspekt der Anaylse von menschlichen Bilddaten und damit Bestandteil der Thesis ist das Rekonstruieren der 3D-Skelett-Pose und der Oberflächendeformation des Menschen anhand von visuellen Informationen, was fachsprachlich auch als Human Performance Capture bezeichnet wird. Solche Rekonstruktionsverfahren ermöglichen das Tracking von virtuellen Charakteren anhand von Beobachtungen in der echten Welt, was unabdingbar ist für Applikationen im Bereich der visuellen Effekte, Virtual und Augmented Reality, um nur einige Applikationsfelder zu nennen. Nichtsdestotrotz basieren traditionelle Tracking-Methoden auf teuren (markerbasierten) Multi-Kamera Systemen, welche für die Mehrheit der Bevölkerung nicht erschwinglich sind oder auf Tiefenkameras, die noch immer nicht so gebräuchlich sind wie herkömmliche Farbkameras. In den letzten Jahren gab es daher erste Methoden, die versuchen, das Tracking-Problem nur mit Hilfe einer Farbkamera zu lösen. Allerdings können diese entweder die Kleidung der Person im Bild nicht tracken oder die Methoden benötigen zu viel Rechenzeit, als dass sie in realen Applikationen genutzt werden könnten. Um diese Probleme zu lösen, stellt die Thesis zwei monokulare Human Performance Capture Methoden vor, die zum ersten Mal eine Echtzeit-Rechenleistung erreichen sowie im Vergleich zu vorherigen Arbeiten die Genauigkeit von Pose und Oberfläche in 3D weiter verbessern. Der Kern der Methoden beinhaltet eine neuartige GPU-basierte und datenparallelisierte Optimierungsstrategie, die im Zusammenspiel mit anderen algorithmischen Designentscheidungen akkurate Ergebnisse erzeugt und dabei eine Echtzeit-Laufzeit ermöglicht. Daneben wird eine neue, differenzierbare und schwach beaufsichtigte, Multi-Kamera basierte Trainingsstrategie in Kombination mit einem komplett differenzierbaren Charaktermodell vorgestellt, welches ungesehene 3D Präzision erreicht. Allerdings spielt nicht nur die Analyse von Menschen in Bildern in Computer Vision eine wichtige Rolle, sondern auch die Möglichkeit, neue Bilder von Personen in unterschiedlichen Posen und Kamera- Blickwinkeln synthetisch zu rendern, ohne dass solche Daten zuvor in der Realität aufgenommen wurden. Diese Methoden sind unabdingbar für die Filmindustrie, da sie es zum Beispiel ermöglichen, fotorealistische virtuelle Welten mit real aussehenden Menschen zu erzeugen, sowie die Möglichkeit bieten, Szenen, die für den Schauspieler zu gefährlich sind, virtuell zu produzieren, ohne dass eine reale Person diese Aktionen tatsächlich ausführen muss. Aber auch Videokonferenzen und Telepresence-Applikationen können von fotorealistischen 3D-Charakteren profitieren, da diese die immersive Erfahrung von solchen Applikationen verstärken. Traditionelle Verfahren zum Rendern von fotorealistischen Bildern involvieren viele mühsame und zeitintensive Schritte, welche Expertenwissen vorraussetzen und zudem auch Rechenzeiten erreichen, die jenseits von Echtzeit sind. Diese Schritte beinhalten das Rigging und Skinning von virtuellen Charakteren, das Modellieren von Reflektions- und Materialeigenschaften sowie physikalisch basiertes Ray Tracing. Vor Kurzem haben Deep Learning-basierte Methoden versucht, die Rendering-Funktion von Daten zu lernen, was in Verfahren resultierte, die eine Nutzung durch Nicht-Experten ermöglicht. Allerdings basieren die meisten Methoden auf Synthese-Verfahren im 2D-Bildbereich und können daher keine 3D-Konsistenz garantieren. Darüber hinaus gelingt es den meisten Methoden auch nicht, bewegungs- und blickwinkelabhängige Effekte zu erzeugen. Daher präsentiert diese Thesis eine neue Methode und eine laufende Forschungsarbeit zum Thema Charakter-Synthese, die es erlauben, fotorealistische und kontrollierbare 3D-Charakteren synthetisch zu rendern, die nicht nur 3D-konsistent sind, sondern auch bewegungs- und blickwinkelabhängige Effekte modellieren und Echtzeit-Rechenzeiten ermöglichen. Dazu wird eine neuartige Grobzu- Fein-Charakterrepräsentation für effiziente Bild-Synthese von Menschen vorgestellt, welche nur anhand von Multi-Kamera-Daten trainiert werden kann. Daneben wird gezeigt, wie diese explizite Geometrie- Repräsentation mit einer impliziten Oberflächendarstellung kombiniert werden kann, was eine bessere Synthese von geomtrischen Deformationen sowie Bildern ermöglicht.
Link to this record: urn:nbn:de:bsz:291--ds-349617
hdl:20.500.11880/31986
http://dx.doi.org/10.22028/D291-34961
Advisor: Theobalt, Christian
Date of oral examination: 29-Oct-2021
Date of registration: 29-Nov-2021
Third-party funds sponsorship: ERC Consolidator Grant 4DRepLy
Sponsorship ID: 770784
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Christian Theobalt
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Diss.pdf47,43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons