Please use this identifier to cite or link to this item: doi:10.22028/D291-34509
Title: Text-image synergy for multimodal retrieval and annotation
Author(s): Nag Chowdhury, Sreyasi
Language: English
Year of Publication: 2021
Free key words: image retrieval
image-text alignment
image captioning
commonsense knowledge
DDC notations: 500 Science
600 Technology
Publikation type: Doctoral Thesis
Abstract: Text and images are the two most common data modalities found on the Internet. Understanding the synergy between text and images, that is, seamlessly analyzing information from these modalities may be trivial for humans, but is challenging for software systems. In this dissertation we study problems where deciphering text-image synergy is crucial for finding solutions. We propose methods and ideas that establish semantic connections between text and images in multimodal contents, and empirically show their effectiveness in four interconnected problems: Image Retrieval, Image Tag Refinement, Image-Text Alignment, and Image Captioning. Our promising results and observations open up interesting scopes for future research involving text-image data understanding.Text and images are the two most common data modalities found on the Internet. Understanding the synergy between text and images, that is, seamlessly analyzing information from these modalities may be trivial for humans, but is challenging for software systems. In this dissertation we study problems where deciphering text-image synergy is crucial for finding solutions. We propose methods and ideas that establish semantic connections between text and images in multimodal contents, and empirically show their effectiveness in four interconnected problems: Image Retrieval, Image Tag Refinement, Image-Text Alignment, and Image Captioning. Our promising results and observations open up interesting scopes for future research involving text-image data understanding.
Text und Bild sind die beiden häufigsten Arten von Inhalten im Internet. Während es für Menschen einfach ist, gerade aus dem Zusammenspiel von Text- und Bildinhalten Informationen zu erfassen, stellt diese kombinierte Darstellung von Inhalten Softwaresysteme vor große Herausforderungen. In dieser Dissertation werden Probleme studiert, für deren Lösung das Verständnis des Zusammenspiels von Text- und Bildinhalten wesentlich ist. Es werden Methoden und Vorschläge präsentiert und empirisch bewertet, die semantische Verbindungen zwischen Text und Bild in multimodalen Daten herstellen. Wir stellen in dieser Dissertation vier miteinander verbundene Text- und Bildprobleme vor: • Bildersuche. Ob Bilder anhand von textbasierten Suchanfragen gefunden werden, hängt stark davon ab, ob der Text in der Nähe des Bildes mit dem der Anfrage übereinstimmt. Bilder ohne textuellen Kontext, oder sogar mit thematisch passendem Kontext, aber ohne direkte Übereinstimmungen der vorhandenen Schlagworte zur Suchanfrage, können häufig nicht gefunden werden. Zur Abhilfe schlagen wir vor, drei Arten von Informationen in Kombination zu nutzen: visuelle Informationen (in Form von automatisch generierten Bildbeschreibungen), textuelle Informationen (Stichworte aus vorangegangenen Suchanfragen), und Alltagswissen. • Verbesserte Bildbeschreibungen. Bei der Objekterkennung durch Computer Vision kommt es des Öfteren zu Fehldetektionen und Inkohärenzen. Die korrekte Identifikation von Bildinhalten ist jedoch eine wichtige Voraussetzung für die Suche nach Bildern mittels textueller Suchanfragen. Um die Fehleranfälligkeit bei der Objekterkennung zu minimieren, schlagen wir vor Alltagswissen einzubeziehen. Durch zusätzliche Bild-Annotationen, welche sich durch den gesunden Menschenverstand als thematisch passend erweisen, können viele fehlerhafte und zusammenhanglose Erkennungen vermieden werden. • Bild-Text Platzierung. Auf Internetseiten mit Text- und Bildinhalten (wie Nachrichtenseiten, Blogbeiträge, Artikel in sozialen Medien) werden Bilder in der Regel an semantisch sinnvollen Positionen im Textfluss platziert. Wir nutzen dies um ein Framework vorzuschlagen, in dem relevante Bilder ausgesucht werden und mit den passenden Abschnitten eines Textes assoziiert werden. • Bildunterschriften. Bilder, die als Teil von multimodalen Inhalten zur Verbesserung der Lesbarkeit von Texten dienen, haben typischerweise Bildunterschriften, die zum Kontext des umgebenden Texts passen. Wir schlagen vor, den Kontext beim automatischen Generieren von Bildunterschriften ebenfalls einzubeziehen. Üblicherweise werden hierfür die Bilder allein analysiert. Wir stellen die kontextbezogene Bildunterschriftengenerierung vor. Unsere vielversprechenden Beobachtungen und Ergebnisse eröffnen interessante Möglichkeiten für weitergehende Forschung zur computergestützten Erfassung des Zusammenspiels von Text- und Bildinhalten.
Link to this record: urn:nbn:de:bsz:291--ds-345092
hdl:20.500.11880/31690
http://dx.doi.org/10.22028/D291-34509
Advisor: Weikum, Gerhard
Date of oral examination: 28-Jun-2021
Date of registration: 2-Sep-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
PhD_thesis.pdfPhD dissertation25,28 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons