Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-33639
Volltext verfügbar? / Dokumentlieferung
Titel: On the Lack of Anonymity of Anonymized Smart Meter Data: An Empiric Study
VerfasserIn: Dietrich, Aljoscha
Leibenger, Dominik
Sorge, Christoph
HerausgeberIn: Tan, Hwee-Pink
Sprache: Englisch
Titel: Proceedings of the IEEE 45th Conference on Local Computer Networks : (LCN 2020) : November 16-19, 2020, Sydney, Australia
Startseite: 405
Endseite: 408
Verlag/Plattform: IEEE
Erscheinungsjahr: 2020
Erscheinungsort: Piscataway
Titel der Konferenz: LCN 2020
Konferenzort: Sydney, Australia
Dokumenttyp: Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag)
Abstract: After over a decade of research into the privacy of smart meters, the sensitivity of an individual household’s fine-grained energy readings is undisputed. A plethora of research contributions aim at protecting the privacy of end users while at the same time providing the energy supplier (and others) with sufficient data for safe operation, billing, and also forecasting purposes. The transmission of fine-grained readings is generally considered acceptable as long as they cannot be linked to the households they originate from (i.e., anonymized readings). Mart ́ınez et al. just recently pointed out that the typical provision of aggregated readings at the end of a billing period could compromise this anonymity, as the individual readings must sum up to the respective aggregate. In this short paper, we complement their research by examining the privacy implications of published aggregates of previously anonymized energy readings: We simulate attacks on a real world data set (Smart*), particularly investigating the implications of different parameter combinations such as aggregation group sizes, considered time spans, and reading precision to gain insights into theoretic risks, e.g., from an incautious choice of parameters.
DOI der Erstveröffentlichung: 10.1109/LCN48667.2020.9314798
URL der Erstveröffentlichung: https://ieeexplore.ieee.org/document/9314798
Link zu diesem Datensatz: hdl:20.500.11880/31302
http://dx.doi.org/10.22028/D291-33639
ISBN: 978-1-72817-158-6
978-1-72817-159-3
Datum des Eintrags: 12-Mai-2021
Fakultät: R - Rechtswissenschaftliche Fakultät
Fachrichtung: R - Rechtswissenschaft
Professur: R - Prof. Dr. Christoph Sorge
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.