Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-33808
Titel: | Computational solutions for addressing heterogeneity in DNA methylation data |
VerfasserIn: | Scherer, Michael |
Sprache: | Englisch |
Erscheinungsjahr: | 2020 |
Freie Schlagwörter: | computational biology epigenomics DNA methylation |
DDC-Sachgruppe: | 004 Informatik 570 Biowissenschaften, Biologie |
Dokumenttyp: | Dissertation |
Abstract: | DNA methylation, a reversible epigenetic modification, has been implicated with various bi- ological processes including gene regulation. Due to the multitude of datasets available, it is a premier candidate for computational tool development, especially for investigating hetero- geneity within and across samples. We differentiate between three levels of heterogeneity in DNA methylation data: between-group, between-sample, and within-sample heterogeneity. Here, we separately address these three levels and present new computational approaches to quantify and systematically investigate heterogeneity. Epigenome-wide association studies relate a DNA methylation aberration to a phenotype and therefore address between-group heterogeneity. To facilitate such studies, which necessar- ily include data processing, exploratory data analysis, and differential analysis of DNA methy- lation, we extended the R-package RnBeads. We implemented novel methods for calculating the epigenetic age of individuals, novel imputation methods, and differential variability analysis. A use-case of the new features is presented using samples from Ewing sarcoma patients. As an important driver of epigenetic differences between phenotypes, we systematically investigated associations between donor genotypes and DNA methylation states in methylation quantitative trait loci (methQTL). To that end, we developed a novel computational framework –MAGAR– for determining statistically significant associations between genetic and epigenetic variations. We applied the new pipeline to samples obtained from sorted blood cells and complex bowel tissues of healthy individuals and found that tissue-specific and common methQTLs have dis- tinct genomic locations and biological properties. To investigate cell-type-specific DNA methylation profiles, which are the main drivers of within-group heterogeneity, computational deconvolution methods can be used to dissect DNA methylation patterns into latent methylation components. Deconvolution methods require pro- files of high technical quality and the identified components need to be biologically interpreted. We developed a computational pipeline to perform deconvolution of complex DNA methyla- tion data, which implements crucial data processing steps and facilitates result interpretation. We applied the protocol to lung adenocarcinoma samples and found indications of tumor in- filtration by immune cells and associations of the detected components with patient survival. Within-sample heterogeneity (WSH), i.e., heterogeneous DNA methylation patterns at a ge- nomic locus within a biological sample, is often neglected in epigenomic studies. We present the first systematic benchmark of scores quantifying WSH genome-wide using simulated and experimental data. Additionally, we created two novel scores that quantify DNA methyla- tion heterogeneity at single CpG resolution with improved robustness toward technical biases. WSH scores describe different types of WSH in simulated data, quantify differential hetero- geneity, and serve as a reliable estimator of tumor purity. Due to the broad availability of DNA methylation data, the levels of heterogeneity in DNA methylation data can be comprehensively investigated. We contribute novel computational frameworks for analyzing DNA methylation data with respect to different levels of hetero- geneity. We envision that this toolbox will be indispensible for understanding the functional implications of DNA methylation patterns in health and disease. DNA Methylierung ist eine reversible, epigenetische Modifikation, die mit verschiedenen biologischen Prozessen wie beispielsweise der Genregulation in Verbindung steht. Eine Vielzahl von DNA Methylierungsdatensätzen bildet die perfekte Grundlage zur Entwicklung von Softwareanwendungen, insbesondere um Heterogenität innerhalb und zwischen Proben zu beschreiben. Wir unterscheiden drei Ebenen von Heterogenität in DNA Methylierungsdaten: zwischen Gruppen, zwischen Proben und innerhalb einer Probe. Hier betrachten wir die drei Ebenen von Heterogenität in DNA Methylierungsdaten unabhängig voneinander und präsentieren neue Ansätze um die Heterogenität zu beschreiben und zu quantifizieren. Epigenomweite Assoziationsstudien verknüpfen eine DNA Methylierungsveränderung mit einem Phänotypen und beschreiben Heterogenität zwischen Gruppen. Um solche Studien, welche Datenprozessierung, sowie exploratorische und differentielle Datenanalyse beinhalten, zu vereinfachen haben wir die R-basierte Softwareanwendung RnBeads erweitert. Die Erweiterungen beinhalten neue Methoden, um das epigenetische Alter vorherzusagen, neue Schätzungsmethoden für fehlende Datenpunkte und eine differentielle Variabilitätsanalyse. Die Analyse von Ewing-Sarkom Patientendaten wurde als Anwendungsbeispiel für die neu entwickelten Methoden gewählt. Wir untersuchten Assoziationen zwischen Genotypen und DNA Methylierung von einzelnen CpGs, um sogenannte methylation quantitative trait loci (methQTL) zu definieren. Diese stellen einen wichtiger Faktor dar, der epigenetische Unterschiede zwischen Gruppen induziert. Hierzu entwickelten wir ein neues Softwarepaket (MAGAR), um statistisch signifikante Assoziationen zwischen genetischer und epigenetischer Variation zu identifizieren. Wir wendeten diese Pipeline auf Blutzelltypen und komplexe Biopsien von gesunden Individuen an und konnten gemeinsame und gewebespezifische methQTLs in verschiedenen Bereichen des Genoms lokalisieren, die mit unterschiedlichen biologischen Eigenschaften verknüpft sind. Die Hauptursache für Heterogenität innerhalb einer Gruppe sind zelltypspezifische DNA Methylierungsmuster. Um diese genauer zu untersuchen kann Dekonvolutionssoftware die DNA Methylierungsmatrix in unabhängige Variationskomponenten zerlegen. Dekonvolutionsmethoden auf Basis von DNA Methylierung benötigen technisch hochwertige Profile und die identifizierten Komponenten müssen biologisch interpretiert werden. In dieser Arbeit entwickelten wir eine computerbasierte Pipeline zur Durchführung von Dekonvolutionsexperimenten, welche die Datenprozessierung und Interpretation der Resultate beinhaltet. Wir wendeten das entwickelte Protokoll auf Lungenadenokarzinome an und fanden Anzeichen für eine Tumorinfiltration durch Immunzellen, sowie Verbindungen zum Überleben der Patienten. Heterogenität innerhalb einer Probe (within-sample heterogeneity, WSH), d.h. heterogene Methylierungsmuster innerhalb einer Probe an einer genomischen Position, wird in epigenomischen Studien meist vernachlässigt. Wir präsentieren den ersten Vergleich verschiedener, genomweiter WSH Maße auf simulierten und experimentellen Daten. Zusätzlich entwickelten wir zwei neue Maße um WSH für einzelne CpGs zu berechnen, welche eine verbesserte Robustheit gegenüber technischen Faktoren aufweisen. WSH Maße beschreiben verschiedene Arten von WSH, quantifizieren differentielle Heterogenität und sagen Tumorreinheit vorher. Aufgrund der breiten Verfügbarkeit von DNA Methylierungsdaten können die Ebenen der Heterogenität ganzheitlich beschrieben werden. In dieser Arbeit präsentieren wir neue Softwarelösungen zur Analyse von DNA Methylierungsdaten in Bezug auf die verschiedenen Ebenen der Heterogenität. Wir sind davon überzeugt, dass die vorgestellten Softwarewerkzeuge unverzichtbar für das Verständnis von DNA Methylierung im kranken und gesunden Stadium sein werden. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-338080 hdl:20.500.11880/31186 http://dx.doi.org/10.22028/D291-33808 |
Erstgutachter: | Lengauer, Thomas |
Tag der mündlichen Prüfung: | 30-Mär-2021 |
Datum des Eintrags: | 20-Apr-2021 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
PhD_thesis_Scherer_Michael.pdf | Complete thesis | 26,59 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.